• 제목/요약/키워드: Dental Image Processing

검색결과 82건 처리시간 0.034초

Comparison of different radiographic methods for the detection of the mandibular canal

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • 제33권4호
    • /
    • pp.199-205
    • /
    • 2003
  • Purpose: To compare the visibility of the mandibular canal at the different radiographic methods such as conventional panoramic radiographs, Vimplant multi planar reformatting (MPR)-CT panoramic images, Vimplant MPR-CT paraxial images and film-based DentaScan MPR-CT images. Materials and Methods: Data of 11 mandibular dental implant patients, who had been planned treatment utilizing both panoramic and MPR-CT examination with DentaScan software (GE Medical systems, Milwaukee, USA), were used in this study. The archived axial CT data stored on CD-R discs were transferred to a personal computer with 17' LCD monitor. Paraxial and panoramic images were reconstructed using Vimplant software (CyberMed Inc., Seoul, Korea). Conventional panoramic radiographs, monitor-based Vimplant MPR-CT panoramic images, monitor-based Vimplant MPR-CT paraxial images, and film-based DentaScan MPR-CT images were evaluated for visibility of the mandibular canal at the mental foramen, 1 cm, 2 cm, and 3 cm posterior to mental foramen using the 4-point grading score. Results: Vimplant MPR-CT panoramic, paraxial, and DentaScan MPR-CT images revealed significantly clearer images than conventional panoramic radiographs. Particularly at the region 1 em posterior to mental foramen, conventional panoramic radiographs showed a markedly lower percentage of 'excellent' mandibular canal images than images produced by other modalites. Vimplant MPR-CT and DentaScan MPR-CT images did not show significant difference in visibility of the mandibular canal. Conclusion: The study results show that Vimplant and DentaScan MPR-CT imaging systems offer significantly better images of the mandibular canal than conventional panoramic radiograph.

  • PDF

Color assessment of resin composite by using cellphone images compared with a spectrophotometer

  • Rafaella Mariana Fontes de Braganca;Rafael Ratto Moraes ;Andre Luis Faria-e-Silva
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.23.1-23.11
    • /
    • 2021
  • Objectives: This study assessed the reliability of digital color measurements using images of resin composite specimens captured with a cellphone. Materials and Methods: The reference color of cylindrical specimens built-up with the use of resin composite (shades A1, A2, A3, and A4) was measured with a portable spectrophotometer (CIELab). Images of the specimens were obtained individually or pairwise (compared shades in the same photograph) under standardized parameters. The color of the specimens was measured in the images using RGB system and converted to CIELab system using image processing software. Whiteness index (WID) and color differences (ΔE00) were calculated for each color measurement method. For the cellphone, the ΔE00 was calculated between the pairs of shades in separate images and in the same image. Data were analyzed using 2-way repeated-measures analysis of variance (α = 0.05). Linear regression models were used to predict the reference ΔE00 values of those calculated using color measured in the images. Results: Images captured with the cellphone resulted in different WID values from the spectrophotometer only for shades A3 and A4. No difference to the reference ΔE00 was observed when individual images were used. In general, a similar ranking of ΔE00 among resin composite shades was observed for all methods. Stronger correlation coefficients with the reference ΔE00 were observed using individual than pairwise images. Conclusions: This study showed that the use of cellphone images to measure the color difference seems to be a feasible alternative providing outcomes similar to those obtained with the spectrophotometer.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

3D Position Measurement & Coping using 2 CCD Cameras (2대의 CCD 카메라를 이용한 3차원 위치측정과 코핑)

  • Kang, Won-Chan;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제51권2호
    • /
    • pp.87-93
    • /
    • 2002
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts have been very important technique in scientific study and engineering, especially for system design, manufacturing and inspection. Two-camera method keeps accuracy more than double than mechanical method. In this paper, a new method is studied to acquire 3D geometric data of the small object such as a die in stone model. When the devices, cameras, laser beam and object are in a perfect plane, the calculation is measured by position error 0.025[mm] within. But this paper shows that arbitrarily positioned system can also be used to obtain 3D data. Also, this paper present a method to generate coping surface data with which CAM system can do for milling work.

The comparison of cephalometric measurements between measuring methods in digital and conventional lateral cephalometric radiograph (디지털 및 일반 측방두부규격방사선사진에서 측정 방법에 따른 계측치의 비교)

  • Kim Mi-Ja;Huh Kyung-Hoe;Yi Won-Jin;Heo Min-Suk;Lee Sam-Sun;Lee Jin-Koo;Ahn Byoung-Keun;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제35권1호
    • /
    • pp.15-23
    • /
    • 2005
  • Purpose : To compare cephalometric measurement between measuring methods in digital and conventional lateral cephalometric radiograph. Materials and Methods : Twenty digital and conventional lateral cephalometric radiographs were selected. In digital group, cephalometric measurements were performed manually using hardcopies and automatically using $V-Ceph^{TM}$ program on the monitor. In conventional group, the same measurements were performed manually on conventional films, and for automatic measurement conventional films were digitized by scanner. All measurements were performed twice by 4 observers, and 24 cephalometric variables were calculated and the time spent for each measurement was recorded. The differences in measurements data and the time spent for each measurement were compared within each group. Intra-observer and inter-observer comparisons were performed. Results : In both groups, no statistically significant difference between manual and automatic measurements was observed and most of the variables didn't show statistically significant differences between methods. The observer with less experience tended to show statistically significant differences of measurements between methods, and differences from other observers. The differences of measurements between methods in digital group were lesser than those of conventional group with statistical significance in 8 variables out of 24. With automatic method and in digital group, the spent time was shorter. Conclusion : With direct digital radiograph, automatic method using manually idenitified landmarks can be preferable in cephalometric analysis. (Korean J Oral Maxillofac Radiol 2005; 35 : 15-23)

  • PDF

A feasibility study on new stimulation method in fMRI language examinations using custom designed images (기능적 자기공명영상의 언어기능검사 시 image를 이용한 자극방법의 타당성 연구)

  • Choi, Kwan-Woo;Son, Soon-Yong;Jeong, Mi-Ae;Min, Jung-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제12권11호
    • /
    • pp.5005-5011
    • /
    • 2011
  • The purpose of this work is to know the validity of a new stimulation method in cognitive functional imaging using custom-designed images correspond to words or syllables improving the shortcomings of existing method using text. From March 2011 to May five Subjects in need of language related functional MRI scanning were selected and both of text stimulating method and image stimulating method sacanning were carried out three times each. Using 3.0T Philps MRI machine and Invivo Co's Eloquence system, data acquisition was performed with EPI-BOLD technique. Post processing was performed with SPM 99 while the activated signals were determined within 95 percent confidence level.The number of activation clusters and the activation ratio inside ROI were compared. As as result, all of the subject showed activation inside Broca area but it did not have statistical significance. In conclusion, the image sitimulation method has potential because image itself is a common means of recognition and it can be recognised easily even if there language barrier. This stimulation method can be applied to replacing the exising scanning method especially in the elderly, infants, foerigners who may not fully understand about the examination.

Study of threshold and opacity in three-dimensional CT volume rendering of oral and maxillofacial area (구강악안면영역의 3차원 CT 영상 재형성시 역치 및 불투명도에 대한 연구)

  • Choi, Mun-Kyung;Lee, Sam-Sun;Huh, Kyung-Hoe;Yi, Won-Jin;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제39권1호
    • /
    • pp.13-18
    • /
    • 2009
  • Purpose: This study was designed to determine a proper threshold value and opacity in three-dimensional CT volume rendering of oral and maxillofacial area. Materials and Methods: Three-dimensional CT data obtained from 50 persons who were done orthognatic surgery in department of oral and maxillofacial radiology of Seoul National University retrospectively. 12 volume rendering post-processing protocols of combination of threshold(100HU, 150HU, 221HU, 270HU) and opacity (58%, 80%, 90%) were applied. Five observers independently evaluated image quality using a five-point range scale. The results were analyzed by receiver operating characteristic curves, ANOVA and Kappa value. And three oromaxillofacial surgeons chose the all images that they thought proper clinically in the all of images. Results: Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. The highest diagnostic accuracy appear with 100HU and 58% opacity. and the lowest diagnostic accuracy appear with 221HU and 58% opacity that are being used protocol in department of oral and maxillofacial radiology of Seoul National University. But, no statistically significant difference was noted between any of the protocols. And the number of proper images clinically that chosen by three oromaxillofacial surgeons is the largest in the cases of protocol 8 (221HU, opacity 80%) and protocol 11 (270HU, opacity 80%) in one after the other. Conclusion: Threshold and opacity in volume rendering can be controled easily and these can be causes of making an diagnostic accuracy. So we need to select proper values of these factors.

  • PDF

Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns

  • Pak, Hyun-Soon;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권2호
    • /
    • pp.33-38
    • /
    • 2010
  • PURPOSE. Marginal fit is a very important factor considering the restoration's long-term success. However, adding porcelain to copings can cause distortion and lead to an inadequate fit which exposes more luting material to the oral environment and causes secondary caries. The purpose of this study was to compare the marginal fit of 2 different all-ceramic crown systems before and after porcelain veneering. This study was also intended to verify the marginal fit of crowns originated from green machining of partially sintered blocks of zirconia (Lava CAD/CAM system) and that of crowns obtained through machining of fully sintered blocks of zirconia (Digident CAD/CAM system). MATERIALS AND METHODS. 20 crowns were made per each system and the marginal fit was evaluated through a light microscope with image processing (Accura 2000) at 50 points that were randomly selected. Each crown was measured twice: the first measurement was done after obtaining a 0.5 mm coping and the second measurement was done after porcelain veneering. The means and standard deviations were calculated and statistical inferences among the 2 groups were made using independent t-test and within the same group through paired t-test. RESULTS. The means and standard deviations of the marginal fit were $61.52{\pm}2.88{\mu}m$ for the Digident CAD/CAM zirconia ceramic crowns before porcelain veneering and $83.15{\pm}3.51{\mu}m$ after porcelain veneering. Lava CAD/CAM zirconia ceramic crowns showed means and standard deviations of $62.22{\pm}1.78{\mu}m$ before porcelain veneering and $82.03{\pm}1.85{\mu}m$ after porcelain veneering. Both groups showed significant differences when analyzing the marginal gaps before and after porcelain veneering within each group. However, no significant differences were found when comparing the marginal gaps of each group before porcelain veneering and after porcelain veneering as well. CONCLUSION. The 2 all-ceramic crown systems showed marginal gaps that were within a reported clinically acceptable range of marginal discrepancy.

Accuracy of conventional and digital mounting of dental models: A literature review (치과용 모형의 모형 부착 과정에서 발생하는 오차에 대한 문헌 고찰)

  • Kim, Cheolmin;Ji, Woon;Chang, Jaeseung;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제59권1호
    • /
    • pp.146-152
    • /
    • 2021
  • Accurate transfer of the maxillo-mandibular relationship to an articulator (i.e., mounting) is critical in prosthetic treatment procedures. In the current study, a PubMed search was performed to review the influencing factors for the maxillo-mandibular relationship's accuracy. The search included digital mounting as well as conventional gypsum cast mounting. The results showed that a greater amount of displacement was introduced during positioning the maxillary and mandibular models to interocclusal records rather than the dimensional change of registration material. Most intraoral scanners resulted in an accurate reproduction of the maxillo-mandibular relationship for posterior quadrant scanning; however, the accuracy was declined as the scan area increased to a complete arch scan. The digital mounting accuracy was also influenced by the image processing algorithms and software versions, especially for complete arch scans.

Dental Surgery Simulation Using Haptic Feedback Device (햅틱 피드백 장치를 이용한 치과 수술 시뮬레이션)

  • Yoon Sang Yeun;Sung Su Kyung;Shin Byeong Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제12권6호
    • /
    • pp.275-284
    • /
    • 2023
  • Virtual reality simulations are used for education and training in various fields, and are especially widely used in the medical field recently. The education/training simulator consists of tactile/force feedback generation and image/sound output hardware that provides a sense similar to a doctor's treatment of a real patient using real surgical tools, and software that produces realistic images and tactile feedback. Existing simulators are complicated and expensive because they have to use various types of hardware to simulate various surgical instruments used during surgery. In this paper, we propose a dental surgical simulation system using a force feedback device and a morphable haptic controller. Haptic hardware determines whether the surgical tool collides with the surgical site and provides a sense of resistance and vibration. In particular, haptic controllers that can be deformed, such as length changes and bending, can express various senses felt depending on the shape of various surgical tools. When the user manipulates the haptic feedback device, events such as movement of the haptic feedback device or button clicks are delivered to the simulation system, resulting in interaction between dental surgical tools and oral internal models, and thus haptic feedback is delivered to the haptic feedback device. Using these basic techniques, we provide a realistic training experience of impacted wisdom tooth extraction surgery, a representative dental surgery technique, in a virtual environment represented by sophisticated three-dimensional models.