• Title/Summary/Keyword: Dental Cement

Search Result 422, Processing Time 0.027 seconds

Interface Phenomena between Prosthodontic Crown and Abutment Sprayed with Die Spacer (Die Spacer가 도포된 보철용 크라운과 어버트먼트의 계면현상)

  • Park, K.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.197-202
    • /
    • 2007
  • Fit of the restoration and its cementation procedure is crucial to both its short and long term prognosis. Marginal fit is affected by many variables during the fabrication process. These variables, being intrinsic properties of the materials or the clinical technique used, can cause changes in the size and shape of the definitive restoration. Even if all variables are controlled carefully, the seating of a restoration can still be affected due to insufficient space for the luting agent. The use of die spacer can reduce the elevation of a cast restoration of a prepared tooth, decreased seating time, improve the outflow of excess cement, and lower the seating forces. The purpose of this study was to evaluate the marginal fidelity according to die spacer application times and measurement site. Casting alloys were prepared and fabricated using non-precious metal at $950^{\circ}C$. Specimens are divided into four groups: I(die spacer painted casting for wax pattern), II(die spacer non painted casting for wax pattern). The specimens were cut and polished for marginal gap observation. The marginal gap was observed using scanning electron microscopy (SEM).

LONG-TERM EVALUATING OF THE REMINERALIZATION OF INTERPROXIMAL CARIES ADJACENT TO GLASS IONOMER RESTORATIONS: A MICRO-CT STUDY (미세 전산화 단층 촬영을 이용한 글라스 아이오노머 수복물의 인접면우식 재광화 효과에 관한 장기간 연구)

  • Lee, Hyeok-Sang;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.3
    • /
    • pp.498-503
    • /
    • 2006
  • This in vitro study compared the remineralization of incipient interproximal caries in the presence of three glass ionomer cements (highly-filled glass ionomer cement, compomer, resin-modified glass ionomer cement) and a resin composite(control). The long-term changes in remineralization caused by each material were evaluated by microtomography. Proximal restoration was simulated by placing tooth specimens and the various glass ionomer cements in closed containers with artificial saliva at $37^{\circ}C$ and pH 7.0 for 30 days with constant circulation Tomographic images were obtained with a micro CT scanner at 90, 180, and 270 days, and density-measuring software was used to calculate the micro-density of artificial caries lesions in the specimens. The mean density changes were compared between groups in order to evaluate the effects of remineralization. All data were analyzed using one-way ANOVA and the post-HOC Tukey multiple comparison test at p<0.05. While the density of artificial caries lesions increased for all treatments, the increases for the three glass ionomer groups were significantly higher than that for the resin group in each three month period. As time went on, the amount of density increase of the glass ionomer groups decreased, and significant differences were found between the remineralization effects of the glass ionomer groups.

  • PDF

The effect of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model (pH 순환 모형을 이용하여 15% 과산화요소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 거칠기에 미치는 영향)

  • Park, So-Young;Song, Min-Ji;Jeon, Su-Young;Kim, Sun-Young;Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.2
    • /
    • pp.351-360
    • /
    • 2013
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM). were used in the study. Eighty-eight specimens of each material were fabricated, randomly divided into two groups(n=44): experimental group(15% carbamide peroxide) and control group(distilled water). These groups were then divided into four subgroups(n=11). All groups were bleached 4 hours per day for 14 days using pH cycling model. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : Z350 and P60 showed a slight color change(${\Delta}E^*$), whereas DY and KM showed significantly color change(p<0.05). Among them, the greatest color change was observed in DY. Percentage microhardness loss(PML) of the distilled water group was 1.8 to 5.1%, and 15% peroxide peroxide group was 5.0 to 25.2%. Microhardness of DY and KM showed a statistically significant decrease(p<0.05). Roughness was increased in all groups after bleaching. Z350 and P60 does not have a significant difference(p>0.05), however DY and KM significantly increased more than the 0.2 ${\mu}m$(p<0.05). Conclusions : The effects of bleaching on restorative materials were material dependent. It is necessary to consider the type of the material before starting the treatment.

Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using real-time cell analysis

  • Malkoc, Meral Arslan;Demir, Necla;Sengun, Abdulkadir;Bozkurt, Serife Buket;Hakki, Sema Sezgin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • PURPOSE. To evaluate the cytotoxicity of temporary luting cements on bovine dental pulp-derived cells (bDPCs). MATERIALS AND METHODS. Four different temporary cements were tested: Rely X Temp E (3M ESPE), Ultratemp (Ultradent), GC Fuji Temp (GC), and Rely X Temp NE (3M ESPE). The materials were prepared as discs and incubated in Dulbecco's modified eagle's culture medium (DMEM) for 72 hours according to ISO 10993-5. A real-time cell analyzer was used to determine cell vitality. After seeding $200{\mu}L$ of the cell suspensions into the wells of a 96-well plate, the bDPCs were cured with bioactive components released by the test materials and observed every 15 minutes for 98 hours. One-way ANOVA and Tukey-Kramer tests were used to analyze the results of the proliferation experiments. RESULTS. All tested temporary cements showed significant decreases in the bDPCs index. Rely X Temp E, GC Fuji Temp, and Rely X Temp NE were severely toxic at both time points (24 and 72 hours) (P<.001). When the cells were exposed to media by Ultratemp, the cell viability was similar to that of the control at 24 hours (P>.05); however, the cell viability was significantly reduced at 72 hours (P<.001). Light and scanning electron microscopy examination confirmed these results. CONCLUSION. The cytotoxic effects of temporary cements on pulpal tissue should be evaluated when choosing cement for luting provisional restorations.

The effect of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials (35% 과산화수소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 표면 거칠기에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.533-541
    • /
    • 2012
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM) were used in the study. The specimens($8mm{\times}5mm$) were made by using a customized acrylic mold. Each material was divided into two groups equally(n=40) : experimental group(35% HP) and control group(distilled water). 35% HP group was treated 30 mim/5 days for 15 days. Each 30 minute treatment session consisted of two 15 minute cycles of gel application with 20 second light exposure. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : 35% HP group showed an apparent color change(${\Delta}E^*$) than control group. In particular, DY and KM showed a noticeable color change and statistically significant differences(p<0.05). 35% HP group showed a reduction in microhardness. Z350 and P60 does not have a statistically significant difference(p>0.05), DY and KM showed a statistically significant difference(p<0.05). Percentage microhardness loss(PML) of control group was 0.6 to 5.5% in the group, 35% HP group was 6.6 to 34.6%. Roughness was increased in 35% HP group after bleaching. Especially DY and KM were significantly increased(p<0.05). Conclusions : Bleaching agents may affect the surface of existing restorations; therefore, they should not be used indiscriminately when tooth-colored restorations are present.

In vitro evaluation of the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with composite fillings after cyclic loading

  • Sadighpour, Leyla;Geramipanah, Farideh;Allahyari, Somayeh;Sichani, Babak Fallahi;Fard, Mohamd Javad Kharazi
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.4
    • /
    • pp.278-284
    • /
    • 2014
  • PURPOSE. There is insufficient data regarding the durability of porcelain laminate veneers bonded to existing composite fillings. The aim of the present study was to evaluate the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with existing composite fillings. MATERIALS AND METHODS. Thirty maxillary central incisors were divided into three groups (for each group, n=10): intact teeth (NP), teeth with class III composite fillings (C3) and teeth with class IV cavities (C4). Porcelain laminate veneers were made using IPS-Empress ceramic and bonded with Panavia F2 resin cement. The microleakage of all of the specimens was tested before and after cyclic loading ($1{\times}10^6$ cycles, 1.2 Hz). The fracture resistance values (N) were measured using a universal testing machine, and the mode of failure was also examined. The statistical analyses were performed using one-way ANOVA and Tukey post hoc tests (${\alpha}=.05$). RESULTS. There was a significant difference in the mean microleakage of group C4 compared with group NT (P=.013). There was no significant difference in the fracture loads among the groups. CONCLUSION. The microleakage and failure loads of porcelain laminate veneers bonded to intact teeth and teeth with standard class III composite fillings were not significantly different.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of primers on the microtensile bond strength of resin cements to cobalt-chromium alloy (레진 시멘트와 코발트 크롬 합금의 미세인장결합강도에 다양한 프라이머들이 미치는 영향)

  • Jung, Hong-Taek;Campana, Shiela A.;Park, Jin-Hong;Shin, Joo-Hee;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: The aim of this study is to evaluate the effects of various primers on the microtensile bond strength (${\mu}TBS$) of resin cements to cobalt-chromium (Co-Cr) dental casting alloy. Materials and methods: Four adhesive primers (Universal primer, Metal primer II, Alloy primer, and Metal/Zirconia primer) and two resin cements (Panavia F2.0, G-CEM LinkAce) were tested. One hundred fifty Co-Cr beams were prepared from Co-Cr ingots via casting ($6mm\;ength{\times}1mm\;width{\times}1mm\;thick$). The metal beams were randomly divided into ten groups according to the adhesive primers and resin cements used; the no-primer groups served as the control (n = 15). After sandblasting with aluminum oxide ($125{\mu}m$ grain), the metal and resin cements were bonded together using a silicone mold. Prior to testing, all metal-resin beams were examined under stereomicroscope, and subjected to the ${\mu}TBS$ test. The mean value of each group was analyzed via one-way ANOVA with Tukey's test as post hoc (${\alpha}=.05$) using SPSS software. Results: The mean ${\mu}TBS$ of all groups was ranged from 20 to 28 MPa. There is no statistically significant difference between groups (P > .05). Mixed failure, which is the combination of adhesive and cohesive failures, is the most prevalent failure mode in both the Panavia F2.0 and G-Cem LinkAce groups. Conclusion: The ${\mu}TBS$ of all tested groups are relatively high; however, the primers used in this study result in no favorable effect in the ${\mu}TBS$ of Panavia F2.0 and G-Cem LinkAce resin cement to Co-Cr alloy.

Evaluation of mechanical properties of several dual-cure resin cements by curing modes (중합방법에 따른 여러 이중중합 레진 시멘트의 기계적 성질 평가)

  • Kim, Soo-Yeon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the mechanical properties of several dual-cure cements by different curing modes. Materials and Methods: One resin-modified glass ionomer cement (FujiCEM 2), two conventional dual-cure resin cements (RelyX ARC, Multilink N), and two dual-cure self-adhesive resin cements (RelyX U200, G-CEM LinkAce) were used. To evaluate the influence of the curing methods, each cements divided into four conditions (n = 20); Condition 1: self-curing for 10 minutes, Condition 2: immediate after 20 seconds light-curing, Condition 3: 24 hours after self-curing, Condition 4: 24 hours after light-curing. The compressive strength and diametral tensile strength were measured with a universal testing machine. All data were statistically analyzed using t-test, one-way ANOVA and Scheffe's test. Results: The results showed the compressive strength and diametral tensile strength after 24 hours in all curing modes were higher than immediate except RelyX ARC light-cured and Multilink N light-cured. The FujiCEM 2 showed lowest values (P < 0.05). Conclusion: The outcome was cement-depend, but there is no significant difference about compressive strength and diametral tensile strength between dual-cure self-adhesive resin cements and conventional resin cements. And this result will be used as a base line data selecting resin cement for favorable long-term prognosis.

STUDY OF POLYMETHYL METHACRYLATE BONE CEMENT CONTAINING BOVINE-DERIVED DEFATTING DEMINERALIZED BONE POWDER (탈지방탈회우골분말과 Polymethyl Methacrylate(PMMA) Bone Cement 혼합제에 관한 연구)

  • Kim, Woon-Kyu;Kim, Su-Gwan;Cho, Se-In;Ko, Young-Moo;Yoon, Jung-Hoon;Ahn, Jong-Mo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.491-497
    • /
    • 2001
  • Polymethylmethacrylate(PMMA) is currently commonly used material for the reconstruction of bone defects and fixation of joint prosthetics following congenital and acquired causes. Although PMMA has widespread use, it does not possess the ideal mechanical characteristics with osteoconductivity and osteoinductivity required. In order to overcome these problem, addition of bovine bone drived defatting demineralized bone(BDB) powders to a PMMA bone cement was done for improvement of physical property and bone forming characteristics of composite. In order to investigate the influence of BDB reinforcement on the PMMA, we measured physical property of compressive, tensile, flexural strength, and scanning electron microscopic examinations. The results were obtained as follows: 1. The PMMA forms a solid cellular matrix with open cells about $100{\mu}m$ in variable size and incorporating BDB. BDB aggregates inside the cells form a porous network that is accessible from the outer surface. 2. The physical properties were compressive strength of mean $22.74{\pm}1.69MPa$, tensile strength of mean $22.74{\pm}1.69MPa$, flexural strength of mean $77.53{\pm}6.93MPa$. Scanning electron microscopic examinations were revealed that there was DBD particles form a highly porous agglomerates. BDB can be added PMMA in the form of dried powders, the composites are applicable as bone substitutes. BDB and PMMA mixture is shown to produce a class of composites that due to their microstructure and improved mechanical properties may be suitable for application as bone subsitutes. The mechanical and material properties of the BDB-PMMA bone substitute composites are competitive with those properties of a porous ceramic matrix of other hydroxyapatite and with those of natural bones.

  • PDF