• Title/Summary/Keyword: Density-functional theory

Search Result 501, Processing Time 0.021 seconds

First Principles Calculations on Magnetism of CrPt3(001) Thin Films (CrPt3(001) 박막의 자성: 제일원리계산)

  • Jeong, Tae Sung;Jekal, Soyoung;Rhim, S.H.;Hong, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Recent study shows that ordered alloy of $L1_2$ $XPt_3$ (M = V, Cr, Mn, Co, and Fe) exhibits various magnetic phases such as ferromagnetic-to-antiferromagnetic transition at the $MnPt_3$ surface. Moreover, it has been argued that $CrPt_3$, in particular, possess large magnetocrystalline anisotropy and Kerr rotation with possible violation of Hund's rule. As such, we extend our work to thickness dependence of the magnetic structure of $CrPt_3$ thin film using density functional theory. Magnetic ground state of the bulk $CrPt_3$ turns out to be ferromagnetic (FM), where other magnetic phases such as A-type (A-AF), C-type (C-AF), and G-type antiferromagnetic (G-AF) state have higher total energies than FM by 0.517, 0.591, and 0.183 eV, respectively, and magnetic moments of Cr in bulk are respectively 2.807 (FM), 2.805 (A-AF), 2.794 (C-AF) and $2.869_{{\mu}_B}$ (G-AF). We extend our study to $CrPt_3$(001) thin films with CrPt-and Pt-termination. The thickness and surface-termination dependences of magnetism are investigated for 3-9 monolayers (ML), where different magnetic phases from bulk emerge: C-AF for CrPt-terminated 3 ML and G-AF for Pt-terminated 5 ML have energy difference relative to FM by 8 and 54 meV, respectively. Furthermore, thickness- and surface-termination-dependent magnetocrystalline anisotropies of the $CrPt_3$(001) films are discussed.