• Title/Summary/Keyword: Density design variable

Search Result 127, Processing Time 0.025 seconds

Identification of a Universal Relation between a Thermodynamic Variable and Catalytic Activities of Pyrites toward Hydrogen Evolution Reaction: Density Functional Theory Calculations (수소발생반응에 대한 Pyrites 표면 촉매 성능 예측: 밀도 범함수 이론 계산)

  • Gang, Jun-Hui;Hwang, Ji-Min;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.87.1-87.1
    • /
    • 2017
  • High functional catalyst to efficiently produce clean and earth-abundant renewable fuels plays a key role in securing energy sustainability and environmental protection of our society. Hydrogen has been considered as one of the most promising energy carrier as represented by focused research works on developing catalysts for the hydrogen evolution reaction (HER) from the water hydrolysis over the last several decades. So far, however, the major catalysts are expensive transition metals. Here using first principles density functional theory (DFT) calculations we screen various pyrites for HER by identifying fundamental descriptor governing the catalytic activity. We enable to capture a strong linearity between experimentally measured exchange current density in HER and calculated adsorption energy of hydrogen atom in the pyrites. The correlation implies that there is an underlying design principle tuning the catalytic activity of HER.

  • PDF

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

Core design study of the Wielenga Innovation Static Salt Reactor (WISSR)

  • T. Wielenga;W.S. Yang;I. Khaleb
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.922-932
    • /
    • 2024
  • This paper presents the design features and preliminary design analysis results of the Wielenga Innovation Static Salt Reactor (WISSR). The WISSR incorporates features that make it both flexible and inherently safe. It is based on innovative technology that controls a nuclear reactor by moving molten salt fuel into or out of the core. The reactor is a low-pressure, fast spectrum transuranic (TRU) burner reactor. Inherent shutdown is achieved by a large negative reactivity feedback of the liquid fuel and by the expansion of fuel out of the core. The core is made of concentric, thin annular fuel chambers containing molten fuel salt. A molten salt coolant passes between the concentric fuel chambers to cool the core. The core has both fixed and variable volume fuel chambers. Pressure, applied by helium gas to fuel reservoirs below the core, pushes fuel out of a reservoir and up into a set of variable volume chambers. A control system monitors the density and temperature of the fuel throughout the core. Using NaCl-(TRU,U)Cl3 fuel and NaCl-KCl-MgCl2 coolant, a road-transportable compact WISSR core design was developed at a power level of 1250 MWt. Preliminary neutronics and thermal-hydraulics analyses demonstrate the technical feasibility of WISSR.

Optimal Design of Vehicle Passenger Compartment (차량승객실의 최적설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 1999
  • This study is to develop design sensitivity analysis method based on continuum theory for the actual buckling load of vehicle passenger compartment with respect to sizing design variables. For nonlinear structural analysis, both geometric and material nonlinear effects are considered. The total Lagrangian formulation for incremental equilibrium analysis and one-point linear eigenvalue problem for buckling analysis are utilized. Numerical methods are presented to evaluate design sensitivity expressions, using structural analysis results from FEM code. Optical design of vehicle passenger compartment with buckling constraint solved using Gradient projection method.

  • PDF

Design of the High Density Power Supply with Flat Transformer (Flat Transformer를 적용한 고밀도 전원장치 설계)

  • Baek J.W.;Kim J.H.;Yoo D.W.;Kim J.S.;Ryu M.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.248-256
    • /
    • 2005
  • This paper presents the design method of the DC/DC converter using flat transformer which is suitable for midium or large capacity and high density power supply. Flat transformer module is composed and manufactured of multi-transformers in parallel and has a number of parallel single turn secondary windings. Therefore, its leakage inductance is highly decreased and it is more suitable for high frequency operation than conventional one. In this paper, we manufactured and tested 750W AC/DC converter with variable output powers to verify the performance of the flat transformer.

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

A Study on Optimal Spot-weld Layout Design of the Vehicle Body Structure Considering Vibration and Side Impact (진동특성 및 측면충돌 성능을 고려한 차체의 점용접 치수 최적화 연구)

  • Shin, Gyung Ho;Lee, Jun Young;Park, Hong Ik;Yim, Hong Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.750-755
    • /
    • 2012
  • In this study we conduct the optimal spot-weld layout design of vehicle body structure considering dynamic stiffness and side impact. We conduct both linear static analysis and nonlinear analysis with a baseline model to verify the process. 13 design variables will be selected for the effect analysis. Then, topology optimization is conducted to each selected design variable. The design constraints are formulated to improve the dynamic stiffness and side impact performance. Objective function is to set the density of weld component. Optimal spot-weld layout design are compared with the baseline model to show the improvement.

  • PDF

Optimal design of switched reluctance motor using 2D FEM and 3D equivalent magnetic circuit network method (2차원 FEM과 3차원 등가자기회로방법을 이용한 SRM의 최적 설계)

  • Jung, S.I.;Kim, Y.H.;Lee, J.;Kim, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.125-127
    • /
    • 2001
  • Switched reluctance motor (SRM) has some advantages such as low cost, high torque density etc. However SRM has inevitably high torque ripple due to the double salient structure. To apply SRM to industrial field, we have to minimize torque ripple, which is the weak-Point of SRM. This paper presents optimal design process of SRM using numerical method such as 2D finite element method (FEM) and 3D equivalent magnetic circuit network method (EMCNM). The electrical and geometrical design parameters have been adopted as 2D design variables. The overhang structure of rotor has been also adopted as 3D design variable. From this work, we can obtain the optimal design, which minimize the torque ripple and maximize energy conversion loop.

  • PDF

Determination of Medium Components in the Flocculating Activity and Production of Pestan Produced by Pestalotiopsis sp. by Using the Plackett-Burman Design

  • Moon, Seong-Hoon;Hong, Soon-Duck;Kwon, Gi-Seok;Suh, Hyun-Hyo;Kim, Hee-Sik;An, Keug-Hyun;Oh, Hee-Mock;Mheen, Tae-Ick;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.341-346
    • /
    • 1998
  • Optimization for the production of Pest an was followed by the Plackett-Burman Design, using modified Czapek-dox medium as the starting point. At the flask level, $K_2HPO_4$, $MgSO_4{\cdot}7H_2O$, and aeration variables positively affected the Pestan production, DCW (dry cell weight), apparent viscosity, and flocculating activity response. KCI and $FeSO_4{\cdot}7H_2O$ negatively affected the Pestan production, DCW, apparent viscosity, and flocculating activity response. Aeration variable was shown to have a positive effect on only the flocculating activity response among Pestan production, DCW, and apparent viscosity responses. In comparison of the positive and negative variables media conditions, Pestan production and flocculating activity differed by about 9 and 125 times, respectively. In particular, at the jar fermentor level, the aeration variable was the most important factor of the all responses (pestan production, DCW, apparent viscosity, flocculating activity, and anionic charge density). The flocculating activity and apparent viscosity of Pestan were closely related to the molecular chain length and charge density.

  • PDF

Deriving a New Divergence Measure from Extended Cross-Entropy Error Function

  • Oh, Sang-Hoon;Wakuya, Hiroshi;Park, Sun-Gyu;Noh, Hwang-Woo;Yoo, Jae-Soo;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • Relative entropy is a divergence measure between two probability density functions of a random variable. Assuming that the random variable has only two alphabets, the relative entropy becomes a cross-entropy error function that can accelerate training convergence of multi-layer perceptron neural networks. Also, the n-th order extension of cross-entropy (nCE) error function exhibits an improved performance in viewpoints of learning convergence and generalization capability. In this paper, we derive a new divergence measure between two probability density functions from the nCE error function. And the new divergence measure is compared with the relative entropy through the use of three-dimensional plots.