• Title/Summary/Keyword: Density Distribution Method

Search Result 1,184, Processing Time 0.026 seconds

Impedance Tomography using Internal Current Density Distribution Measured by Nuclear Magnetic Resonance (자기공명촬영상에서 구한 내부 전류밀도를 이용한 임피던스 단층촬영법)

  • Lee, Su-Yeol;U, Eung-Je;Mun, Chi-Ung
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.413-418
    • /
    • 1994
  • In electrical impedance tomography (EIT), we use boundary current and voltage measurements to provide the information about the cross-sectional distribution of electrical impedance or resistivity One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.7T NMR machine. We implemented a resistivity image reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the image reconstruction algorithm and furture direction of the research.

  • PDF

DNAPL removal from a rough-welled single fracture with Density-surfactant-motivated method

  • Lee Hang-Bok;Ji Seong-Hun;Yeo In-Uk;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.215-218
    • /
    • 2005
  • We applied the density-surfactant-motivated method to the removal of DNAPL within a rough-walled single fracture. Observations are made to compare the DNAPL residual distribution before and after the flushing of surfactant-enhanced solution or water flushing. Results show that density-motivated method with surfactant-enhanced solution effectively removed DNAPL in a single fracture.

  • PDF

Statistical and Probabilistic Assessment for the Misorientation Angle of a Grain Boundary for the Precipitation of in a Austenitic Stainless Steel (II) (질화물 우선석출이 발생하는 결정립계 어긋남 각도의 통계 및 확률적 평가 (II))

  • Lee, Sang-Ho;Choe, Byung-Hak;Lee, Tae-Ho;Kim, Sung-Joon;Yoon, Kee-Bong;Kim, Seon-Hwa
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.554-562
    • /
    • 2008
  • The distribution and prediction interval for the misorientation angle of grain boundary at which $Cr_2N$ was precipitated during heating at $900^{\circ}C$ for $10^4$ sec were newly estimated, and followed by the estimation of mathematical and median rank methods. The probability density function of the misorientation angle can be estimated by a statistical analysis. And then the ($1-{\alpha}$)100% prediction interval of misorientation angle obtained by the estimated probability density function. If the estimated probability density function was symmetric then a prediction interval for the misorientation angle could be derived by the estimated probability density function. In the case of non-symmetric probability density function, the prediction interval could be obtained from the cumulative distribution function of the estimated probability density function. In this paper, 95, 99 and 99.73% prediction interval obtained by probability density function method and cumulative distribution function method and compared with the former results by median rank regression or mathematical method.

Properties and Fractal Analysis of Joints around the Moryang Fault (모량단층 주변 절리의 분포 특성과 프랙탈 해석)

  • 최한우;장태우
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.119-134
    • /
    • 1999
  • Joints developed around the Moryang fault were investigated by traverse and inventory methods in order to characterize their orientation, spacing and density. The results of the traverse method show that the orientation of the dominant joint sets of the study area is NNE and EW, and that joint spacing distribution is a negative exponential distribution to the center of the fault and a log-normal distribution to the margin of the fault. The results of the inventory method show that the orientation of the dominant joint sets on joint map is NW and NE, and that joint density tends to increase toward the center of the fault. Fractal dimension was determined by using Box-counting method and Cantor's dust method to quantify the distribution of joint network and to evaluate the dimension around the fault. The dimension determined by Box-counting method ranges from 1.31 to 1.70 and shows the tendency of increasing value toward the center of the fault. Comparing fractal dimension by Box-counting method with joint density, fractal dimension is directly proportional to joint density. Nevertheless, fractal dimension could be varied due to the different distribution patterns of the joints with same density. The dimensions determined by Cantor's dust method show different values with respect to the orientation of scan lines. This results form the anisotropy of joint distribution.

  • PDF

Studies on Density Measurement of Green Fe/Ni P/M Sheet Using ${\gamma}-ray$ (감마선을 이용한 소결 전 Fe/Ni 분말야금 판재의 밀도측정에 관한 연구)

  • Cho, K.S.;Lee, J.O.;Lee, S.Y.;Lee, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.3
    • /
    • pp.7-11
    • /
    • 1992
  • Accurate measurement of green density of compacted part in the powder metallurgy industry is rather fundamental but extremely important process that decide the quality of the sintered part. In case of green sheet P/M product, the green density as well as the distribution of the density must be examined for the same reasons. Currently in most cases, density measuring process is being performed applying conventional Archimedes principles. However this method is not only time-consuming but also often inaccurate because of the inherent nature of the process, such as part sectioning, closing of surface porosity with wax and weighing in air and in water. Therefore, it is necessary to develop a faster and more accurate method to measure the density of green sheet P/M product. In this work, a nondestructive density measurement device using gamma-ray absorption principles was constructed and the optimum condition for measuring green density of P/M sheet and its distribution was sought. The results showed that this method was very effective in terms of measuring time and accuracy.

  • PDF

일본ME학회 학술대회 참관기

  • 홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.135-138
    • /
    • 1988
  • In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality.

  • PDF

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

A Novel Technique for Current Density Distribution Analysis of Solidly Modelled Coil (Solid 모델링된 코일의 전류 밀도 분포 해석을 위한 새로운 방법)

  • Im, Chang-Hwan;Kim, Hong-Gyu;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.483-487
    • /
    • 2000
  • The analysis of current distribution in a solidly modeled coil is very important for accurate of electric machines such as deflection yoke. In general, Modeling every coils is nearly impossible for analyzing magnetic field using the 3-D finite element method, so solidly modeled coil is usually used. Some methods have been developed for analyzing current distribution, but these methods have fatal disadvantages. The main disadvantages are that the methods cannot be applied to an arbitrary shaped coil and that they yield numerical errors. In this paper, a novel method for resolving the problems mentioned above is proposed. The new method is verified by the application to a test model and it shows a very accurate result.

  • PDF

A study on the topology optimization of structures (구조물의 토폴로지 최적화에 관한 연구)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1241-1249
    • /
    • 1997
  • The problem of structural topology optimization can be relaxed and converted into the optimal density distribution problem. The optimal density distribution must be post-processed to get the real shape of the structure. The extracted shape can then be used for the next process, which is usually shape optmization based on the boundary movement method. In the practical point of view, it is very important to get the optimal density distribution from which the corresponding shape can easily be extracted. Among many other factors, the presence of checker-board patterns is a powerful barrier for the shape extraction job. The nature of checker-board patterns seems to be a numerical locking. In this paper, an efficient algorithm is presented to suppress the checker-board patterns. At each iteration, density is re-distributed after it is updated according to the optimization rule. The algorithm also results in the optimal density distribution whose corresponding shape has smooth boundary. Some examples are presented to show the performance of the density re-distribution algorithm. Checker-board patterns are successfully suppressed and the resulting shapes are considered very satisfactory.

Spatio-temporal Charge Distribution in Electric Double Layer Capacitors observed by pulsed Electro Acoustic Method

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2007
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about $205C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}=2.5V$, while the positively charged density became the maximum, about $61.1C/m^3$ at the region where it was located around the cathode layer. The performance of the best sample was found to be better in terms of the charge density (Cs) and specific energy ($E_s$) with a maximum value of ${\sim}8.4F/g$ and 26 Wh/kg. The $C_s$ obtained from the PEA method agreed well with that from the energy conversion method. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.