• Title/Summary/Keyword: Density

Search Result 37,238, Processing Time 0.065 seconds

Distyly and Population Size of Abeliophyllum distichum Nakai, an Endemic Plant in Korea (한국 특산식물 미선나무의 이화주성(Distyly) 및 개체군 크기)

  • So-Dam Kim;Ae-Ra Moon;Shin-Young Kwon;Seok-Min Yun;Hwi-Min Kim;Dong-Hyoung Lee;Sung-Won Son
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.639-650
    • /
    • 2022
  • Abeliophyllum distichum Nakai, a rare plant with distylous characteristics, is native to certain parts of the Korean Peninsula. It is registered on the IUCN Red List of Threatened Species as a globally endangered plant. This study was conducted to establish an appropriate local conservation management plan suitable for future A. distichum populations by comparing and analyzing the flowering characteristics and population size according to distyly based on the results of quantitative surveys in 14 regions, including 8 areas with native populations of A. distichum and 6 natural monument populations. The number of individuals appearing in each population group was surveyed, and the flowering individuals were identified by style as being either pin or thrum flower types as they were being examined and recorded on the site. In total, 13,130 individuals of A. distichum (7,003 flowering and 6,127 non-flowering individuals) were recorded, but the balance of the number of pin- and thrum-flowered individuals in each population was not significant (p<0.05), indicating an imbalanced state. In particular, the Yeongdong (YD) population was very disproportionate compared to other populations, suggesting that its genetic diversity was low and the possibility of inbreeding was high. The average flowering and fruiting rates by management unit were much higher in the natural monument populations (89.2% and 55.3%, respectively) than in the natural habitat populations (39.0% and 8.5%, respectively). It may be due to a difference in reproductive growth resulting from light inflow into the forest caused by the upper crown closure. The area of occupation (AOO) of A. distichum on the Korean Peninsula covered an area of 23,224.5 m2. Although the natural monument population was smaller than the natural habitat population, its density was higher, likely as a result of the periodic management of natural monument populations, where the installation of protective facilities in certain areas restricts population spread. Conservation of A. distichum populations requires removing the natural monument populations suspected of anthropogenic and genetic disturbances and expanding the conservation priority population by designating new protected areas. Although the habitats of natural monument populations are managed by the Cultural Heritage Administration and local governments, there are no agencies that are responsible for managing natural habitat populations. Therefore, institutional improvement in the overall management of A. distichum should be prioritized.

Ecotoxicity of Daphnia magna and Aliivibrio fischeri on Potentially Harmful Substances Emissionsfrom Battery Manufacturing Processes: Lithium, Nickel, and Sulfate (배터리 제조공정에서 배출되는 잠재 유해 물질에 대한 물벼룩과 발광박테리아의 생태독성: 리튬, 니켈, 황산염을 대상으로)

  • Inhye Roh;Kijune Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • Wastewater generated in the secondary battery production process contains lithium and high-concentration sulfate. Recently, as demand as demand for high-Ni precursors with high-energy density has surged, nickel emission is also a concern. Lithium and sulfate are not included in the current water pollutant discharge standard, so if they are not properly processed and discharged, the negative effect on future environment may be great. Therefore, in this study, the ecotoxicity of lithium, nickel, and sulfate, which are potential contaminants that can be discharged from the secondary battery production process, was evaluated using water flea (Daphnia magna) and luminescent bacteria (Aliivibrio fischeri). As a result of the ecotoxicity test, 24-hour and 48-hour D. magna EC50 values of lithium were 18.2mg/L and 14.5mg/L, nickel EC50 values were 7.2mg/L and 5.4mg/L, and sulfate EC50 values were 4,605.5mg/L and 4,345.0mg/L, respectively. In the case of D. magna, it was found that there was a difference in ecotoxicity according to the contaminants and exposure time (24 hours, 48 hours). Comparing the EC50 of D. magna for lithium, nickel, and sulfate, the EC50 of nickel at 24h and 48h was 39.6-37.2% compared to lithium and 0.1-0.2% compared to sulfate, which was the most toxic among the three substances. The difference appeared to be at a similarlevelregardless of the exposure time. The EC50 of sulfate was 253.0-299.7% and 639.5-804.6%, respectively, compared to lithium and nickel, showing the least toxicity among the three substances. The 30-minute EC50 values of luminescent bacteria forlithium, nickel, and sulfate were 2,755.8mg/L, 7.4mg/L, and 66,047.3mg/L,respectively. Unlike nickel, it was confirmed that there was a difference in sensitivity between D. magna and A. fischeri bacteria to lithium and sulfate. Studies on the mixture toxicity of these substances are needed.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

Leaf Mineral Contents and Growth Characteristics of Strawberry Grown in Aquaponic System with Different Growing Media in a Plant Factory (식물공장형 아쿠아포닉스 시스템에서 배지 종류에 따른 딸기 잎의 무기이온 함량과 생육 특성)

  • Su-Hyun Choi;Min-Kyung Kim;Young-Ae Jeong;Seo-A Yoon;Eun-Young Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.122-131
    • /
    • 2023
  • This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.

Seasonal changes in phytoplankton community related with environmental factors in the Busan coastal region in 2014 (2014년 부산 연안 해역에서 계절적 환경특성에 따른 식물플랑크톤 군집의 변화양상)

  • JI Nam Yoon;Young Kyun Lim;Dong Sun Kim;Young Ok Kim;Seung Ho Baek
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • To assess the influence of environmental factors on the phytoplankton community structure and total phytoplankton biomass during four seasons in 2014, we investigated the abiotic and biotic factors at 25 stations in the Busan coastal region. The phytoplankton community and total phytoplankton biomass were strongly dependent on the discharge from the Nakdong River, and the high density of phytoplankton was related with the introduction of the Tsushima Warm Current (TWC), particularly in the thermohaline fronts of the fall season. The relationship between the salinity and nutrient (Dissolved inorganic nitrogen=DIN: R2=0.72, p<0.001 and Dissolved inorganic silicon=DSi: R2=0.78, p<0.001) highly correlated with the river discharge, implying that those nutrients have played a crucial role in the growth of diatom and cryptophyta. The total phytoplankton biomass was highest in the summer followed by autumn, spring, and winter. Diatom and cryptophyta species were dominant species during the four seasons. Additionally, there were strong positive correlations between Chlorophyll a and total phytoplankton biomass (R2=0.84, p<0.001), cryptophyta (R2=0.76, p<0.001) and diatom (R2=0.50, p<0.001), respectively. In particular, we found that there were significant differences in the nutrients, phytoplankton community compositions, and total phytoplankton biomass between the inner and the outer coastal region of Busan, depending on the amount of river discharge from the Nakdong River, particularly during rainy seasons. Therefore, the seasonal change of TWC and river discharge from the Nakdong River serve an important role in determining phytoplankton population dynamics in the Busan coastal region.

Isolation and Characterization of the Indigenous Microalgae Chlamydomonas reinhardtii K01 as a Potential Resource for Lipid Production and Genetic Modification (지질생산 및 유전자 조작의 잠재적 자원으로서의 토착 미세조류 Chlamydomonas reinhardtii K01의 분리 및 특성)

  • Kim, Eun-Kyung;Cho, Dae Hyun;Suh, Sang-Ik;Lee, Chang-Jun;Kim, Hee-Sik;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.202-209
    • /
    • 2022
  • The green alga Chlamydomonas reinhardtii, a unicellular haploid eukaryote, has long been used by researchers and industries as a cell factory to produce high value-added microalgae substances using genetic modification. Microalga K01, presumed to be Chlamydomonas, was isolated from 12 freshwater samples from the Chungcheong and Jeolla regions to replace C. reinhardtii, an introduced species currently used in most basic and industrial research. The isolated K01 strain was identified as C. reinhardtii through morphological and phylogenetic studies of the 18S rDNA gene sequence (NCBI accession number KC166137). The growth and lipid content of the isolated C. reinhardtii K01 were compared with three wild and four mutant strains in TAP medium, and it was found that the K01 strain could produce 1.74×107 cells/ml by the third day of culture. The growth rate of C. reinhardtii K01 was 1.5 times faster than UTEX2244, which showed the highest number of cells (1.20×107 cells/ml) among the compared strains. The lipid content of the isolated C. reinhardtii K01 (20.67%) was similar to those of the wild strains, although the fatty acid oleate C18:1 was not detected in the isolated strain but was identified in the seven others. The cell density of the isolated strain increased to 0.87 g/l during a six-day culture in BG11 medium, where nitrate (NaNO3) was introduced as a nitrogen source, while the seven acquired strains showed almost no cell proliferation.

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

Relationship between the Progression of Kyphosis in Thoracolumbar Osteoporotic Vertebral Compression Fractures and Magnetic Resonance Imaging Findings (흉요추 골다공증성 압박 골절에서의 후만 변형의 진행과 자기공명영상 소견 사이의 관계)

  • Jun, Deuk Soo;Baik, Jong-Min;Kwon, Hyuk Min
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • Purpose: To examine the relationship between the progression of a kyphotic deformity and the magnetic resonance imaging (MRI) findings in conservatively treated osteoporotic thoracolumbar compression fracture patients. Materials and Methods: This study categorized the patients who underwent conservative treatment among those patients who underwent treatment under the suspicion of a thoracolumbar compression fracture from January 2007 to March 2016. Among them, this retrospective study included eighty-nine patients with osteoporosis and osteopenia with a bone density of less than -2.0 and single vertebral body fracture. This study examined the MRI of anterior longitudinal ligament or posterior longitudinal ligament injury, superior or inferior endplate disruption, superior of inferior intravertebral disc injury, the presence of low signal intensity on T2-weighted images, and bone edema of intravertebral bodies in fractured intravertebral bodies. Results: In cases where the superior endplate was disrupted or the level of bone edema of the intravertebral bodies was high, the kyphotic angle, wedge angle, and anterior vertebral compression showed remarkably progression. In the case of damage to the anterior longitudinal ligament or the superior disc, only the kyphotic angle was markedly prominent. On the T2-weighted images, low signal intensity lesions showed a high wedge angle and high anterior vertebral compression. On the other hand, there were no significant correlations among the posterior longitudinal ligament injury, inferior endplate disruption, inferior disc injury, and the progression of kyphotic deformity and vertebral compression. The risk factors that increase the kyphotic angle by more than 5° include the presence of injuries to the anterior longitudinal ligament, superior endplate disruption, and superior disc injury, and the risk factors were 21.3, 5.1, and 8.5 times higher than those of the uninjured case, and the risk differed according to the level of bone edema. Conclusion: An osteoporotic thoracolumbar compression fracture in osteoporotic or osteopenic patients, anterior longitudinal ligament injury, superior endplate and intravertebral disc injury, and high level of edema in the MRI were critical factors that increases the risk of kyphotic deformity.

The Effect of Distal Hooks in Thoracolumbar Fusion Using a Pedicle Screw in Elderly Patients (척추경 나사못을 이용한 고령 환자의 흉요추부 유합에서 원위부 갈고리의 효과)

  • Lee, Dong-Hyun;Kim, Sung-Soo;Kim, Jung-Hoon;Lim, Dong-Ju;Choi, Byung-Wan;Kim, Jin-Hwan;Kim, Jin-Hyok;Park, Byung-Ook
    • Journal of the Korean Orthopaedic Association
    • /
    • v.52 no.1
    • /
    • pp.83-91
    • /
    • 2017
  • Purpose: To investigate the clinical outcomes of distal hook augmentation using a pedicle screw in thoracolumbar fusion in elderly patients. Materials and Methods: This retrospective multicenter study recruited 20 patients aged 65 years or older, who underwent anterior support and long level posterior fusion in the thoracolumbar junction with a follow-up of one year. To assess the effect of distal hook augmentation, the patients were divided into two groups; the pedicle screw with hook group (PH group, n=10) and the pedicle screw alone group (PA group, n=10). Results: The average age was 72.4 years (65-83 years). The average fusion segment was 4.6 segments (3-6 segments). There were no significant differences in age, sex, causative diseases, bone mineral density of lumbar and proximal femur, number of patients with osteoporosis, and number of fused segments between the two groups (p≥0.05). At 1 year follow-up after surgery, parameters related with distal screw pullout were significantly worse in the PA group. No patients in the PH group had distal screw pullout. However, six patients (60%, 6/10) in the PA group had distal screw pullout. There were no significant differences in the progression of distal junctional kyphosis between the two groups. Conclusion: Distal hook augmentation is an effective procedure in protecting distal pedicle screws against the pullout when long level thoracolumbar fusion was performed in elderly patients aged 65 years or older.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.