• Title/Summary/Keyword: Densification Parameter

Search Result 24, Processing Time 0.022 seconds

Sintering and Electrical Properties of Mn-doped ZnO-$TeO_2$ Ceramics

  • Hong, Youn-Woo;Baek, Seung-Kyoung;Hwang, Hyun-Suk;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.49-49
    • /
    • 2008
  • ZnO-based varistors have been widely used for voltage stabilization or transient surge suppression in electric power systems and electronic circuits. Recently, It has reported that the varistor behavior with nonlinear coefficient of 6~17 in Mn-doped ZnO. In this study we have chosen the composition of ZnO-$TeO_2-Mn_3O_4$ (ZTM) system to the purpose of whether varistor behavior appeared in doped ZnO by the solid state sintering or not. We investigated the sintering and electric properties of 0.5~3.0 at% Mn doped ZnO-1.0 at% $TeO_2$ system. Electrical properties, such as current-voltage (I-V), capacitance-voltage (C-V), and impedance spectroscopy were conducted. $TeO_2$ itself melts at $732^{\circ}C$ in air but forms the $ZnTeO_3$ phase with ZnO as increasing temperature and therefore retards the densification of ZnO to $1000^{\circ}C$. The average grain size of sintered samples was at about $3{\mu}m$ and decreased with increasing Mn contents. It was found that a good varistor characteristics were developed in ZTM system sintered at $1100^{\circ}C$ (nonlinear coefficient $\alpha$ ~ 60). The results of C-V characteristics such as barrier height ($\Theta$), donor density ($N_d$), depletion layer (W), and interface state density ($N_t$) in ZTM ceramics were $4\times10^{17}cm^{-3}$, 0.7 V, 40 nm, and $1.6\times10^{12}cm^{-2}$, respectively. It will be discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z(T)"-logf plots in ZTM system.

  • PDF

The Effects of $SrTiO_3$ Addition on the Microstructure and Magnetic Properties of YIG (YIG ($Y_3$$Fe_5$O_{12}$)의 미세구조 및 자성 특성에 대한 $SrTiO_3$첨가 영향)

  • Jang, Hak-Jin;Yun, Seok-Young;Kim, Tae-Ok
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.203-206
    • /
    • 2001
  • The effects of SrTiO$_3$ addition and sintering temperature on the microstructure and magnetic properties of yttrium iron garnet (YIG) were investigated. The lattice Parameter increasing of sintered YlG with small amount of SrTiO$_3$ addition was supposed to be substituted $Y^{+3}$, Fe$^{+3}$ ions to Sr$^{+2}$,Ti$^{+4}$ ions which are relatively large in ionic ranius. A YIG specimen sintered at 142$0^{\circ}C$ with 0.2mol% SrTiO$_3$ showed above 98% densification of theoretical density. Saturation magnetization (M$_s$) at room temperature decreased a little bit with increasing SrTiO$_3$, addition but no great chance. In addition, the coercivity (H$_c$) was almost not changed by sintering temperature.

  • PDF

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Time Evolution of Material Parameters in Durability Design of Marin Concrete (해양콘크리트의 내구성 설계를 위한 재료 매개변수의 시간단계별 해석)

  • Yoon, In-Seok;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1077-1080
    • /
    • 2008
  • Material parameters such as surface chloride content, water permeability coefficient, chloride diffusivity and critical chloride content are a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Over the past few decades, a considerable number of studies on the durability design for marine concrete structures have been carried out. However, the results are different to each other. In order to establish a consistent durability design system of concrete, it is a precondition to define material parameters, which affect deterioration of concrete due to chloride penetration. Such parameters are surface chloride content, chloride diffusivity, and critical chloride content. Usually these parameters are assumed as temporary constant values or obtained from the experimental results for short term. However, it is necessary to define these parameters reasonably, because these significantly influence the calculation of service life of concrete. In this paper, it is introduced to define material parameters of concrete for chloride diffusion, such as surface chloride content $[Cl]_s$, water permeability coefficient K, chloride diffusivity $D_{Cl}$, critical chloride content $[Cl]_{cr}$. These are expressed as time function considering hydration evolution of hardened cement paste. The definition of the material parameters is a prerequisite to simulate chloride penetration into concrete as time elapsed.

  • PDF