• Title/Summary/Keyword: Dense

Search Result 4,031, Processing Time 0.025 seconds

A Green View Index Improvement Program for Urban Roads Using a Green Infrastructure Theory - Focused on Chengdu City, Sichuan Province, China - (그린인프라스트럭처 개념을 적용한 가로 녹시율 개선 방안 - 중국 쓰촨성(四川省) 청두시(成都市)을 중심으로 -)

  • Hou, ShuJun;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.61-74
    • /
    • 2023
  • The concept of "green infrastructure" emphasizes the close relationship between natural and urban social systems, thereby providing services that protect the ecological environment and improve the quality of human life. The Green View Index(GVI) is an important indicator for measuring the supply of urban green space and contains more 3D spatial elements concerning the green space ratio. This study focused on an area within the Third Ring Road in the city of Chengdu, Sichuan Province, China. The purposes of this study were three-fold. First, this study analyzed the spatial distribution characteristics of the GVI in urban streets and its correlation with the urban park green space system using Street View image data. Second to analyze the characteristics of low GVI streets were analyzed. Third, to analyze the connectivity between road traffic and street GVI using space syntax were analyzed. This study found that the Street GVI was higher in the southwestern part of the study area than in the northeastern part. The spatial distribution of the street GVI correlated with urban park green space. Second, the street areas with low GVI are mainly concentrated in areas with dense commercial facilities, areas with new construction, areas around elevated roads, roads below Class 4, and crossroads areas. Third, the high integration and low GVI areas were mainly concentrated within the First Ring Road in the city as judged by the concentration of vehicles and population. This study provides base material for future programs to improve the GVI of streets in Chengdu, Sichuan Province.

Evaluation and Weathering Depth Modeling of Thermally Altered Pelitic Rocks based on Chemical Weathering and Variations: Ulju Cheonjeon-ri Petroglyph (화학적 풍화작용과 조성변화에 따른 열변질 이질암의 풍화심도 모델링 및 평가: 울주 천전리 각석)

  • LEE Chan Hee;CHUN Yu Gun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.160-189
    • /
    • 2023
  • The Cheonjeon-ri petroglyph is inscribed with shale formation belonging to the Daegu Formation of the Gyeongsang Supergroup in the Cretaceous of the Mesozoic Era. This rock undergoes thermal alteration to become hornfels, and has a high hardness and dense texture. Rock-forming minerals have almost the same composition as quartz, alkali felspar, plagioclase, calcite, mica, chlorite and opaque minerals, but calcite is rarely detected in the weathered zone. The petroglyph forms a weathered zone with a certain depth, and there is a difference in mineral and chemical composition between weathered and unweathered zones, respectively. The CaO contents of the weathered zone were reduced by more than 90% compared to that of the unweathered zone, because calcite reacted with water and dissolved. As a result of calculating the surface weathering depth for the petroglyph with the transmission characteristics of X-rays, depth of the parts in falling off and exfoliation showed a depth of about 0.5 to 1 mm, but the weathering depth in most areas was calculated to be about 3 to 4 mm. This can be proved by the contents and changes of Ca and Sr. The surface discolorations of the petroglyph are distributed with different color density, and the yellowish brown discoloration is alternated with a thin biofilm layer, showing a coverage of 79.6%. Therefore, periodic preservation managements and preventive conservation monitoring that can effectively control the physicochemical and biological damages of the Cheonjeonri petroglyph will be necessary.

Microscopical Anatomy of Integumentary System of the Walleye Pollock Gadus chalcogrammus (Teleostei: Gadidae) (명태 Gadus chalcogrammus 피부계의 미세해부학적 구조)

  • Hyeon Jin Kim;So Ryung Shin;Jae Won Kim;Jung Sick Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.160-165
    • /
    • 2023
  • This study describes the light microscopical cell types and histochemical characteristics as a preliminary study for the research on integument of the walleye pollock Gadus chalcogrammus in accordance with the physiological and environmental changes. The lateral line of the integument surface showed a curve in the anterior part and was straight from the middle to the posterior part. Integument is composed of outer epidermis and inner dermis. The epidermis is a stratified layer composed of epithelial cells, mucous cells, and club cells. Epithelial cells are classified into squamous superficial cell, cuboidal intermediated cell and columnar basal cell. The thickness of epidermis was 122.9 ㎛, and the ratio of epidermis thickness to body length was 0.03%. The mucous cell and club cell of unicellular gland were mainly distributed in the apical and middle layer of epidermis. The mucous cell contained mucosal materials of acidic glycoprotein. The proportion of mucous cells and club cells were 21.3 (± 7.0)% and 4.0 (± 1.0)% of epidermal area, respectively. The dermis was dense connective tissue layer and composed of mainly collagen fibers. It also contained fibrocytes, blood vessels, melanophores and scales.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Along and across-wind vibration control of shear wall-frame buildings with flexible base by using passive dynamic absorbers

  • Ivan F. Huergo;Hugo Hernandez-Barrios;Roberto Gomez-Martinez
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.15-42
    • /
    • 2024
  • A flexible-base coupled-two-beam (CTB) discrete model with equivalent tuned mass dampers is used to assess the effect of soil-structure interaction (SSI) and different types of lateral resisting systems on the design of passive dynamic absorbers (PDAs) under the action of along-wind and across-wind loads due to vortex shedding. A total of five different PDAs are considered in this study: (1) tuned mass damper (TMD), (2) circular tuned sloshing damper (C-TSD), (3) rectangular tuned sloshing damper (R-TSD), (4) two-way liquid damper (TWLD) and (5) pendulum tuned mass damper (PTMD). By modifying the non-dimensional lateral stiffness ratio, the CTB model can consider lateral deformations varying from those of a flexural cantilever beam to those of a shear cantilever beam. The Monte Carlo simulation method was used to generate along-wind and across-wind loads correlated along the height of a real shear wall-frame building, which has similar fundamental periods of vibration and different modes of lateral deformation in the xz and yz planes, respectively. Ambient vibration tests were conducted on the building to identify its real lateral behavior and thus choose the most suitable parameters for the CTB model. Both alongwind and across-wind responses of the 144-meter-tall building were computed considering four soil types (hard rock, dense soil, stiff soil and soft soil) and a single PDA on its top, that is, 96 time-history analyses were carried out to assess the effect of SSI and lateral resisting system on the PDAs design. Based on the parametric analyses, the response significantly increases as the soil flexibility increases for both type of lateral wind loads, particularly for flexural-type deformations. The results show a great effectiveness of PDAs in controlling across-wind peak displacements and both along-wind and across-wind RMS accelerations, on the contrary, PDAs were ineffective in controlling along-wind peak displacements on all soil types and different kind of lateral deformation. Generally speaking, the maximum possible value of the PDA mass efficiency index increases as the soil flexibility increases, on the contrary, it decreases as the non-dimensional lateral stiffness ratio of the building increases; therefore, there is a significant increase of the vibration control effectiveness of PDAs for lateral flexural-type deformations on soft soils.

Background Breast Parenchymal Signal During Menstrual Cycle on Diffusion-Weighted MRI: A Prospective Study in Healthy Premenopausal Women

  • Yeon Soo Kim;Bo La Yun;A Jung Chu;Su Hyun Lee;Hee Jung Shin;Sun Mi Kim;Mijung Jang;Sung Ui Shin;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.511-517
    • /
    • 2024
  • Objective: To prospectively investigate the influence of the menstrual cycle on the background parenchymal signal (BPS) and apparent diffusion coefficient (ADC) of the breast on diffusion-weighted MRI (DW-MRI) in healthy premenopausal women. Materials and Methods: Seven healthy premenopausal women (median age, 37 years; range, 33-49 years) with regular menstrual cycles participated in this study. DW-MRI was performed during each of the four phases of the menstrual cycle (four examinations in total). Three radiologists independently assessed the BPS visual grade on images with b-values of 800 sec/mm2 (b800), 1200 sec/mm2 (b1200), and a synthetic 1500 sec/mm2 (sb1500). Additionally, one radiologist conducted a quantitative analysis to measure the BPS volume (%) and ADC values of the BPS (ADCBPS) and fibroglandular tissue (ADCFGT). Changes in the visual grade, BPS volume (%), ADCBPS, and ADCFGT during the menstrual cycle were descriptively analyzed. Results: The visual grade of BPS in seven women varied from mild to marked on b800 and from minimal to moderate on b1200 and sb1500. As the b-value increased, the visual grade of BPS decreased. On b800 and sb1500, two of the seven volunteers showed the highest visual grade in the early follicular phase (EFP). On b1200, three of the seven volunteers showed the highest visual grades in EFP. The BPS volume (%) on b800 and b1200 showed the highest value in three of the six volunteers with dense breasts in EFP. Three of the seven volunteers showed the lowest ADCBPS in the EFP. Four of the seven volunteers showed the highest ADCBPS in the early luteal phase (ELP) and the lowest ADCFGT in the late follicular phase (LFP). Conclusion: Most volunteers did not exhibit specific BPS patterns during their menstrual cycles. However, the highest BPS and lowest ADCBPS were more frequently observed in EFP than in the other menstrual cycle phases, whereas the highest ADCBPS was more common in ELP. The lowest ADCFGT was more frequent in LFP.

Crystal structural property and chemical bonding nature of cellulose nanocrystal formed by high-pressure homogenizer (고압 균질기를 이용하여 형성된 셀룰로오스 나노결정의 결정 구조 및 화학적 결합 특성 연구)

  • Chel-Jong Choi;Nae-Man Park;Kyu-Hwan Shim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.79-85
    • /
    • 2024
  • We investigated the crystal structural property and chemical bonding nature of cellulose nanocrystal extracted directly from cotton cellulose using high-pressure homogenizer. The nanowire-like cellulose nanocrystals were randomly distributed in the form of a dense mesh. Based on calculating the interplanar distance of the Bragg-diffracted crystal plane observed through X-ray diffraction (XRD) analysis, it was found that the cellulose nanocrystals formed by high-pressure homogenizer had a monoclinc crystal structure, corresponding to the cellulose Iβ sub-polymorph. Solid-state nuclear magnetic resonance (NMR) analysis for the quantitatively evaluation of the amorphous region in cellulose nanocrystals revealed that the crystallinity index of cellulose nanocrystals was calculated to be 53.06 %. The O/C ratio of the surface of cellulose nanocrystal was estimated to be 0.82. Further analysis showed that chemical bonds of C-C bond or C-H bond, C-O bond, O-C-O bond or C=O bond, and O-C=O bond were the main chemical bonding states of the cellulose nanocrystal surface.

Feasibility of Deep Learning-Based Analysis of Auscultation for Screening Significant Stenosis of Native Arteriovenous Fistula for Hemodialysis Requiring Angioplasty

  • Jae Hyon Park;Insun Park;Kichang Han;Jongjin Yoon;Yongsik Sim;Soo Jin Kim;Jong Yun Won;Shina Lee;Joon Ho Kwon;Sungmo Moon;Gyoung Min Kim;Man-deuk Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.949-958
    • /
    • 2022
  • Objective: To investigate the feasibility of using a deep learning-based analysis of auscultation data to predict significant stenosis of arteriovenous fistulas (AVF) in patients undergoing hemodialysis requiring percutaneous transluminal angioplasty (PTA). Materials and Methods: Forty patients (24 male and 16 female; median age, 62.5 years) with dysfunctional native AVF were prospectively recruited. Digital sounds from the AVF shunt were recorded using a wireless electronic stethoscope before (pre-PTA) and after PTA (post-PTA), and the audio files were subsequently converted to mel spectrograms, which were used to construct various deep convolutional neural network (DCNN) models (DenseNet201, EfficientNetB5, and ResNet50). The performance of these models for diagnosing ≥ 50% AVF stenosis was assessed and compared. The ground truth for the presence of ≥ 50% AVF stenosis was obtained using digital subtraction angiography. Gradient-weighted class activation mapping (Grad-CAM) was used to produce visual explanations for DCNN model decisions. Results: Eighty audio files were obtained from the 40 recruited patients and pooled for the study. Mel spectrograms of "pre-PTA" shunt sounds showed patterns corresponding to abnormal high-pitched bruits with systolic accentuation observed in patients with stenotic AVF. The ResNet50 and EfficientNetB5 models yielded an area under the receiver operating characteristic curve of 0.99 and 0.98, respectively, at optimized epochs for predicting ≥ 50% AVF stenosis. However, Grad-CAM heatmaps revealed that only ResNet50 highlighted areas relevant to AVF stenosis in the mel spectrogram. Conclusion: Mel spectrogram-based DCNN models, particularly ResNet50, successfully predicted the presence of significant AVF stenosis requiring PTA in this feasibility study and may potentially be used in AVF surveillance.

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

Anti-thrombotic effect of artemisinin through regulation of cAMP production and Ca2+ mobilization in U46619-induced human platelets (U46619 유도의 사람 혈소판에서 cAMP 생성 및 Ca2+동원의 조절을 통한 Artemisinin의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.402-407
    • /
    • 2023
  • The regulation of platelet aggregation is crucial for maintaining normal hemostasis, but abnormal or excessive platelet aggregation can contribute to cardiovascular disorders such as stroke, atherosclerosis, and thrombosis. Therefore, identifying substances that can control or suppress platelet aggregation is a promising approach for the prevention and treatment of these conditions. Artemisinin, a compound derived from Artemisia or Scopolia plants, has shown potential in various areas such as anticancer and Alzheimer's disease research. However, the specific role and mechanisms by which artemisinin influences platelet activation and thrombus formation are not yet fully understood. This study investigated the effects of artemisinin on platelet activation and thrombus formation. As a result, cAMP production were increased significantly by artemisinin, as well as phosphorylated VASP and IP3R which are substrates to cAMP-dependent kinase by artemisinin in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R phosphorylation from artemisinin, and phosphorylated VASP by artemisinin aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artemisinin inhibited thrombin-induced thrombus formation. Therefore, we suggest that artemisinin has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.