• Title/Summary/Keyword: Denitration

Search Result 10, Processing Time 0.019 seconds

Theoretical Researches of Kinetics and Anharmonic Effect for the Reactions Related to NO in the Ozone Denitration Process

  • Yu, Hongjing;Xia, Wenwen;Liu, Yancheng;Yao, Li
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.185-196
    • /
    • 2021
  • For studying the reaction mechanism of the reactions related to NO in the ozone denitration reactions, the harmonic and anharmonic rate constants were calculated by the transition state (TS) theory and Yao and Lin (YL) method. According to above calculations, the reactions of NO with O3 and NO3 play an essential role, and the kinetic parameters considering anharmonic effect were fitted. Furthermore, the rate constants were up as temperature increasing, and the tendencies of high temperature were more gradual than the low temperature. The research will provide theoretical basis for the ozone denitration reactions.

Nitroglycerin Biodegradation under Denitrification Conditions and Corresponding Microbial Community Shifts upon Acclimation (탈질조건에서 nitroglycerin의 생물학적 분해 동역학 및 미생물 군집 변화)

  • Choi, Wonchul;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.42-54
    • /
    • 2019
  • Biodegradation of an explosive compound, glyceryl trinitrate (GTN), was studied with a denitrifying microbial culture grown in a sequencing batch reactor and a GTN acclimated denitrifying culture. The GTN acclimated culture, which were fed on GTN for 1 month, degraded GTN regioselectively via denitration on C1 position as compared to C2 position denitration by denitrifying culture that has never been exposed to GTN. Accumulation of two isomeric glyceryl dinitrates (GDNs) in both culture medium suggests that GDN denitration is the rate-limiting step in GTN biodegradation. The first order GTN degradation rate normalized to cell concentration of the acclimated culture was calculated to be 0.045 (${\pm}0.002$) L/g-hr. Increasing concentration of electron acceptor(nitrate) resulted in discouraged GTN degradation. According to microbial community analysis, prolonged GTN exposure resulted in 25% increase in the genus level of the GTN acclimated culture with the disappearance of two dominating denitrifying microbial species of Methyloversatilis universalis and Hyphomicrobium zavarzinii in the denitrifying culture.

Denigration Kinetics by Formic Acid in the Simulated Radwaste Solution (모의 방사성폐액에서의 개미산 탈질속도 연구)

  • Lee, E.H.;Whang, D.S.;Kim, K.W.;Kwon, S.G.;Yoo, J.H.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.132-139
    • /
    • 1997
  • This study was carried out to examine the kinetics and reaction mechanism of denitration with formic acid in the simulated radwaste solution containing 6 components such as Nd, Pd, Ru, Zr, Mo and Fe. All experiments were performed with the changes of initial nitric acid concentration, molar ratio of formic acid to nitric acid, and denitration time at $90^{\circ}C$ and a batch system. As results, destruction rate of nitric acid and formic acid was obtained as follows, respectively. $\frac{d[HNO_3]}{dt}=-4.842{\times}10^{-2}[HNO_3][HCOOH],\;\frac{d[HCOOH]}{dt}=-8.911{\times}10^{-2}[HNO_3][HCOOH]$ It was confirmed that denitration with formic acid was controlled by reaction mechanism suggested this study in the range of the initial nitric acid of 2~5M and $[HCOOH]/[HNO_3]$ of 1.5~2.0. In the 1M initial nitric acid, however, it was found that the nitric acid and the formic acid were decomposed by a different reaction mechanism.

  • PDF

Simultaneous Utilization of Two Different Pathways in Degradation of 2,4,6-Trinitrotoluene by White Rot Fungus Irpex lacteus

  • 김현영;송홍규
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.250-250
    • /
    • 2002
  • This study confirmed that white rot fungus Irpex lacteus was able to metabolize 2,4,6-trinitrotoluene (TNT) with two different initial transformations. In one metabolic pathway of TNT a nitro group was removed from the aromatic ring of TNT. Hydride-Meisenheimer complexes of TNT (H/sup -/-TNT), colored dark redo were confirmed as the intermediate in this transformation by comparison with the synthetic compounds. 2,4-Dinitrotoluene as a following metabolic product was detected, and nitrite produced by denitration of $H^-$-TNT supported this transformation. In the other TNT pathway, nitro groups in TNT were successively reduced to amino groups via hydroxylamines. Hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes were identified as the intermediates. The activity of a membrane-associated aromatic nitroreductase was detected in the cell-free extract of I. lacteus. This enzyme catalyzed the nitro group reduction of TNT with NADPH as a cofactor, Enzyme activity was not observed in the presence of molecular oxygen.

Microbial Degradation and Toxicity of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

  • Khan, Muhammad Imran;Lee, Jaejin;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1311-1323
    • /
    • 2012
  • In the present work, current knowledge on the potential fate, microbial degradation, and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was thoroughly reviewed, focusing on the toxicological assessment of a variety of potential RDX degradation pathways in bacteria and fungi. The present review on microbial degradation pathways and toxicities of degradation intermediates suggests that, among aerobic RDX degradation pathways, the one via denitration may be preferred in a toxicological perspective, and that among anaerobic pathways, those forming 4-nitro-2,4-diazabutanal (NDAB) via ring cleavage of 1-nitroso-3,5-dinitro-1,3,5-triazinane (MNX) may be toxicologically advantageous owing to its potential mineralization under partial or complete anoxic conditions. These findings provide important information on RDX-degrading microbial pathways, toxicologically most suitable to be stimulated in contaminated fields.

Simultaneous Utilization of Two Different Pathways in Degradation of 2,4,6-Trinitrotoluene by White Rot Fungus Irpex lacteus

  • Kim, Hyoun-Young;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.250-254
    • /
    • 2000
  • This study confirmed that white rot fungus Irpex lacteus was able to metabolize 2,4,6-trinitrotoluene (TNT) with two different initial transformations. In one metabolic pathway of TNT a nitro group was removed from the aromatic ring of TNT. Hydride-Meisenheimer complexes of TNT (H$\^$-/-TNT), colored dark redo were confirmed as the intermediate in this transformation by comparison with the synthetic compounds. 2,4-Dinitrotoluene as a following metabolic product was detected, and nitrite produced by denitration of H$\^$-/-TNT supported this transformation. In the other TNT pathway, nitro groups in TNT were successively reduced to amino groups via hydroxylamines. Hydroxylamino-dinitrotoluenes and amino-dinitrotoluenes were identified as the intermediates. The activity of a membrane-associated aromatic nitroreductase was detected in the cell-free extract of I. lacteus. This enzyme catalyzed the nitro group reduction of TNT with NADPH as a cofactor, Enzyme activity was not observed in the presence of molecular oxygen.

  • PDF

암모늄 우라닐 나이트레이트의 열분해 및 환원반응

  • 김병호;조병렬;최윤동;박진호;황성태;문재철;이기영
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.46-51
    • /
    • 1996
  • 본 연구는 MDD(modified direct denitration)공정의 주 우라늄염인 암노늄 우라닐 나이트레이트의 화학특성을 밝히고 이들 화합물의 열분해 및 환원반응의 반응기구에 대하여 조사되었다. 암모늄 우라닐 나이트레이트는 제조 조건에 따라 N $H_4$$UO_2$N $O_3$와 (N $H_4$)$_2$$UO_2$(N $O_3$)$_4$.2$H_2O$의 두가지 형태의 복염으로 존재함이 화학 및 원소분석, X산 회절 분석, 그리고 적외선 분광분석에 의하여 확인되었다. 암모늄 우라닐 나이트레이트는 질소분위기에서 N $H_4$$UO_2$(N $O_3$)$_3$$\longrightarrow$ Amorphous $UO_3$$\longrightarrow$ a-$UO_3$$\longrightarrow$ U$_3$ $O_{8}$$\longrightarrow$ $\alpha$-U$_3$ $O_{8}$의 경로를 따라서 열분해 되며, 수소분위기에서는 N $H_4$$UO_2$(N $O_3$)$_3$$\longrightarrow$ $UO_3$$\longrightarrow$ U$_3$ $O_{8}$$\longrightarrow$ U$_4$ $O_{9}$ $\longrightarrow$ $UO_2$의 경로로 환원되었다.

  • PDF

Thermal Denitration of High Concentration Nitrate Salts Waste Water (열분해에 의한 고농도 질산염 폐액의 탈질)

  • ;;;;;C. Latge
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.665-670
    • /
    • 2003
  • This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate Salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at $250^{\circ}C$$730^{\circ}C$$450^{\circ}C$$Na_2O$ into stable $Na_2O$.$Al_2O_3$. The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation.

  • PDF

Status and Strategy on Recycling of Domestic Used Chemical Catalysts (국내 사용 후 화학촉매제품의 재자원화 현황 및 향후 방향)

  • Kim, Young-Chun;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.3-16
    • /
    • 2017
  • Chemical catalyst products are applied to various fields such as petrochemical process, air pollution prevention facility and automobile exhaust gas purifier. The domestic and overseas chemical catalyst market is increasing every year, and the amount of waste catalyst generated thereby is also increasing. Most of the used chemical catalyst products, such as desulfurized waste catalysts and automobile waste catalysts containing valuable metals are important recyclable resources from a substitute resource point of view. The recycling processes for recovering valuable metals have been commercialized through some urban mining companies, and SCR denitration catalysts have been recycled through some remanufacturing companies. In this paper, the amount of domestic production and recycling of major catalyst products have thus been investigated and analyzed so as to be used as basic data for establishing industrial support policy for recycling of used chemical catalyst products. Also tasks for promoting the recycling of used chemical catalyst products are suggested.

The Study of Reaction Characteristics of V/W/TiO2 Catalyst Using Se-TiO2 Support On NH3-SCR Reaction (Se-TiO2 지지체를 이용한 V/W/TiO2 NH3-SCR 촉매의 반응 특성 연구)

  • Lee, Yeon Jin;Won, Jong Min;Ahn, Suk Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2021
  • In this study, an experiment and a reaction characteristic study were conducted to enhance the reaction activity of V2O5/WO3/TiO2 at 300 ℃ or less by adding selenium to the support, in a selective catalytic reduction method using ammonia as a reducing agent to remove nitrogen oxides. Se-TiO2 and TiO2 were synthesized using the sol-gel method, and used as a support when preparing V2O5/WO3/TiO2 and V2O5/WO3/Se-TiO2 catalysts. The reaction activity of our catalyst was compared with that of a commercial catalyst. The denitration efficiency of the catalyst using TiO2 prepared by the sol-gel method was lower than that of the catalyst prepared using commercial TiO2, but was improved by the addition of selenium. Thus, the effect of selenium addition on the catalyst structure was analyzed using BET, XRD, Raman, H2-TPR, and FT-IR measurements and the effect of the increase in specific surface area by selenium addition and the formation of monomer and complex vanadium species on reaction characteristics were confirmed.