Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.3.185

Theoretical Researches of Kinetics and Anharmonic Effect for the Reactions Related to NO in the Ozone Denitration Process  

Yu, Hongjing (Dalian Maritime University)
Xia, Wenwen (Dalian Maritime University)
Liu, Yancheng (Dalian Maritime University)
Yao, Li (Shanghai Maritime University)
Publication Information
Abstract
For studying the reaction mechanism of the reactions related to NO in the ozone denitration reactions, the harmonic and anharmonic rate constants were calculated by the transition state (TS) theory and Yao and Lin (YL) method. According to above calculations, the reactions of NO with O3 and NO3 play an essential role, and the kinetic parameters considering anharmonic effect were fitted. Furthermore, the rate constants were up as temperature increasing, and the tendencies of high temperature were more gradual than the low temperature. The research will provide theoretical basis for the ozone denitration reactions.
Keywords
Ozone denitration reaction; Nitric oxide; Rate constant; Anharmonic effect; Transition state theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guo, L.; Han, C.; Zhang, S.; Zhong, Q.; Ding, J.; Zhang, B.; Zeng, Y. Fuel 2018, 233, 769.   DOI
2 Gao, L.; Li, C.; Zhang, J.; Zhang, J.; Du, X.; Li, S.; Tang, L.; Chen, J.; Zeng, G. Fuel 2018, 215, 30.   DOI
3 David, M.; Gollasch, S., In Springer Science & Business Media, David, M. Ed.; Academic Press: Izola Slovenia, 2015; pp 1-11.
4 Song, L.; Yang, J.; Yu, S.; Xu, M.; Yao, L. J. Chem. Eng. 2019, 373, 767.   DOI
5 Bailey, D.; Solomon, G. Environ. Impact Assess. Rev. 2004, 24, 749.   DOI
6 Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Fuel Process. Technol. 2007, 88, 817.   DOI
7 Filtschew, A.; Hess, C. Appl. Catal. B: Environ. 2018, 237, 1066.   DOI
8 Maiboom, A.; Tauzia, X.; Hetet, J. F. Energy. 2008, 33, 22.   DOI
9 Mok, Y. S.; Lee, H. Fuel Process. Technol. 2006, 87, 591.   DOI
10 Wang, Z.; Cen, K.; Zhou, J.; Fan, J. Simultaneous Multi-pollutants Removal in Flue Gas by Ozone. Academic Press: Zhejiang University Press: Hangzhou, China, 2014.
11 Wang, Z.; Zhou, J.; Fan, J.; Cen, K. Energ. Fuel 2006, 20, 2432.   DOI
12 Ma, S. C.; Min, S.; Ma, J.X.; Jin, X.; Yi, Z. Environ. Sci. 2009, 30, 3461.
13 Panek, P. T.; Jacob, C. R. J. Phys. Chem. Lett. 2016, 7, 3084.   DOI
14 Ramirez, R.; Chacon, E.; Herrero, C. P. Phys. Rev. B 2016, 93, 1.
15 Sean, A. C.; Dowell, M. J. Mol. Struct. 2006, 770, 119.   DOI
16 Wang, H.; Zhuang, Z.; Sun, C. J. Environ. Sci. 2016, 41, 51.   DOI
17 Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976.   DOI
18 Song, K.; Hase, W. L. J. Chem. Phys. 1999, 110, 6198.   DOI
19 Yao, L.; Lin, S. H. Sci. China Ser. B 2008, 51, 1146.   DOI
20 Ma, S.; Su, M.; Sun, Y.; Jin, X. Pro. CSEE. 2010, 30, 81.
21 Ma, B.; Li, X.; Hu, Z.; Jian, S.; Zhang, P. J. Wuhan Univ. Technol. 2004, 26, 33.
22 Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168.   DOI
23 Borinaga, M.; Errea, I.; Calandra, M.; Mauri, F.; Bergara, A. Phys. Rev. B. 2016, 93, 174308.   DOI
24 Eyring, H.; Lin, S. H.; Lin, S. M. In Basic Chemical Kinetics; A Wiley-interscience Publication: New York, U.S.A., 1980.
25 Ashmore, P. G.; Burnett, M. G. J. Chem. Soc. Faraday Trans. 2 1962, 58, 253.   DOI
26 Lin, F.; Wang, Z.; Ma, Q.; He, Y.; Whiddon, R.; Zhu, Y.; Liu, J. Energy Fuels. 2016, 30, 5101.   DOI
27 Julio, P. G.; Ignacio, N. G. J. Phys. Chem. A 2002, 106, 10302.   DOI
28 Eslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432.   DOI
29 Krems, R.; Nordholm, S. A. Z. Phys. Chem. 2000, 214, 1467.
30 Dumas, J. L. Bull. Soc. Chim. Fr. 1976, 1, 658.
31 Borders, R. A.; Birks, J. W. J. Phys. Chem. 1982, 86, 3295.   DOI
32 Last, I.; Aguilar, A.; Sayos, R.; Gonzalez, M.; Gilibert, M. J. Phys. Chem. 1997, 101, 1206.   DOI
33 Liu, Y.; Wang, Y.; Zhu, Z.; Zhang, X. Z.; Sun, J. F. J. At. Mol. Phys. 2002, 19, 19.
34 Trung, Q. L.; Mackay, D.; Hirata, A.; Trass, O. Combust. Sci. Technol. 1975, 10, 155.   DOI
35 Freedman, E.; Daiber, J. W. J. Chem. Phys. 1961, 34, 1271.   DOI
36 Yuan, E. L.; Slaughter, J. I.; Koerner, W. E.; Daniels, F. J. Phys. Chem. 1959, 63, 952.   DOI
37 Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, Jr. R. F.; Kerr, J. A.; Troe, J. J. Phys. Chem. 1992, 21, 1125.
38 Borisov, A. A.; Skachkov, G. I.; Oguryaev, A. A. Kinet. Catal. 1973, 14, 1.
39 Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. J. Chem. Theory. Comput. 2010, 6, 2115.   DOI
40 Mebel, A. M.; Lin, M. C.; Morokuma, K.; Melius, C. F. Int. J. Chem. Kinet. 1996, 28, 693.   DOI
41 Fisburne, E. S.; Edse, R. J. Chem. Phys. 1964, 41, 1297.   DOI
42 Gvozdev, A. A.; Nesterenko, V. B.; Nichipor, G. V.; Trubnikov, V. Navuk BSSR Ser. Fiz. Energ. Navuk. 1979, 73, 1.
43 Hao, Y.; Pan, X.; Song, L.; Ding,Y.; Xia, W.; Wang, S.; Yu, H.; Kang, L.; Yao, L. Can. J. Chem. 2017, 95, 1064.   DOI
44 Bhuiyan, L. B.; William, L.; Sum, H. J. Chem. Phys. 1983, 78, 5052.   DOI
45 DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. L. Chemical Kinetic and Photochemical Data for Use in Stratospheric Modeling: Evaluation No. 11 of the NASA Panel for Data Evaluation; JPL Publication 94-26: 1994.
46 Yao, L., Gao, D., Yu, H., Xia, W. Chem. Phys. Lett. 2020, 751, 1.
47 Laidler, K. J. J. Chem. Educ. 1984, 61, 494.   DOI
48 Zhao, R.; Gao, D.; Pan, X.; Xia, W.; Yu, H.; Yu, S.; Yao, L. Chem. Phys. Lett. 2018, 703, 97.   DOI
49 Tsang, W.; Herron, J. T. J. Phys. Chem. 1991, 20, 609.
50 Cobos, C. J.; Troe, J. J. Chem. Phys. 1985, 83, 1010.   DOI
51 Yu, H.; Xia, W.; Song, L.; Ding, Y.; Hao, Y.; Kang, L.; Yao, L. Acta Phys. Chim. Sin. 2017, 33, 2207.
52 Zhao, Y.; Truhlar, D. G. Theory. Chem. Account. 2008, 120, 215.   DOI
53 Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A. 2007, 111, 6722.   DOI
54 Yao, L.; Liu, Y. L. Mode. Phys. Lett. B 2008, 22, 3043.   DOI
55 Jinko, K.; Nicholas, R.; James, P.; Kunal, K.; Daniela, S. M.; Henry, E. C. J. Systemics, Cybernetics Informatics. 2009, 1.
56 Donovan, R. J.; Husain, D. Chem. Rev. 1970, 70, 489.   DOI
57 Forst, W. Chem. Rev. 1971, 71, 339.   DOI
58 Gilbert, R. G.; Smith, S. C. In Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
59 Forst, W. In Theory of Unimolecular Reactions; Academic Press: New York, U. S. A., 1973.
60 Baer, T.; Hase, W. L. In Unimolecular Reaction Dynamics: Theory and Experiments. Oxford University Press: New York, U.S.A., 1996.
61 Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432.   DOI
62 Wang, Z.; Zhou, J.; Wei, L.; Wen, Z. C.; Cen, K. F. Pro. CSEE. 2007, 27, 1.