• Title/Summary/Keyword: Dendritic zinc

Search Result 12, Processing Time 0.027 seconds

Effects of Electrolyte Concentration on Growth of Dendritic Zinc in Aqueous Solutions (수용액중 아연 덴드라이트의 성장 반응에 미치는 전해질 농도의 영향)

  • Shin, Kyung-Hee;Jung, Kyu-Nam;Yoon, Su-Keun;Yeon, Sun-Hwa;Shim, Joon-Mok;Joen, Jae-Deok;Jin, Chang-Soo;Kim, Yang-Soo;Park, Kyoung-Soo;Jeong, Soon-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 2012
  • In order to understand the nature of dendritic zinc growth, electrochemical zinc redox reaction on nickel plate was investigated in aqueous solutions containing different concentrations, 0.2, 0.1 and 0.02 $mol{\cdot}dm^{-3}$ (M), of zinc sulfate ($ZnSO_4$) or zinc chloride ($ZnCl_2$). Zinc ion was efficiently reduced and oxidized on nickel in the high-concentration (0.2 M) solution, whereas relatively poor efficiency was obtained from the other low-concentration solutions (0,1 and 0.02 M). Cyclic voltammetry (CV) analysis revealed that the 0.2 M electrolyte solution decomposes at more positive potentials than the 0.1 and the 0.02 M solutions. These results suggested that the concentration of electrolyte solution and anion would be an important factor that suppresses the reaction of the zinc dendrite formation. Scanning Electron Microscopy (SEM) data revealed that the shape of dendritic zinc and its growing behavior were also influenced by electrolyte concentration.

A Study on the Corrosion Mechanism by the Moisture on the Surface Layer of the Alloys Coated Steel Sheet (합금도금강판의 수적에 의한 표면층의 부식기구에 관한 연구)

  • Kim, Y.H.;Kim, S.K.;Jeon, E.C.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • Since the early 1980's the use of zinc-aluminum alloy-coated steel sheet(Galvalume) for vehicular corrosion protection has increased drastically. It is consisting of 55%Al-43.4% Zn-1.6%Si. Galvalume has a good corrosion resistance, heat reflectivity and shiny appearance, which has a dendritic structure of alloy layer. It has a good corrosion resistance due to dendritic structure. But, this also has a weak point against moisture during long period of transportation as sheeted and or coiled without any relation of chromating on the surface of steel sheet or not because of high humidity and temperature. Here, We studied the corrosion mechanism by the moisture.

  • PDF

Microstructure of zinc electrodeposits in acid sulfate solution (黃酸亞鉛 電解液을 使用한 亞鉛電着層의 顯微鏡 組織)

  • Ye, Gil-Chon;An, Deok-Su;Kim, Yong-Ung
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1985
  • The microstructure of zine electrodeposits was investigated by using zinc sulfate solution in still bath. The cathode current efficiency decreased with increasing current density, and decreasing temperature. The preferred orientation of the zinc electrodeposits changed from (10.3) texture to(10.${\ell}$)-(00.1)(${\ell}$=1, 2, 3) texture through (10.2)-(10.3) preferred orientation with increasing cathode over potential. The surface morphology of zinc electrodeposits changed from the dendritic growth with granular crystallites to the blocks of hexagonal crystallites packed together with increasing current density. The microstructure of cross section of the above deposits are the rough granular structure and columnar structure respectively.

  • PDF

Porphyrin-Cored Arylether Dendrimers with Vinyl Groups in the Periphery

  • Lim, So-Yeon;Choi, Dae-Ock;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1353-1358
    • /
    • 2008
  • Benzyl arylether dendrimers with zinc porphyrin core and terminal vinyl groups have been synthesized and their photophysical properties and the influence of dendritic environments were investigated. Free base porphyrin-cored benzyl arylether dendrimers 1a-1c and 3a-3c, and their zinc derivatives 2a-2c and 4a-4c have been prepared. Absorption spectra are similar for all porphyrin-cored benzyl arylether dendrimers, except that absorption intensity at 280 nm increases in the higher generation of dendrimer. Fluorescence spectra are similar with two bands for all free base porphyrin dendrimers 1a-1c and 3a-3c, although fluorescence intensity ratio of shorter wavelength emission band to longer wavelength band varies with the generation of dendrimer. Emission efficiencies of 1a-1c and 3a-3c are lower than that of TTP. Emission efficiencies of 2a-2c and 4a-4c are higher than that of ZnTTP. Absorption and emission properties of 1a-1c, 2a-2c, 3a-3c, and 4a-4c were affected negligibly with dendritic environments.

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Zinc-enriched (ZEN) Terminals in Onuf's Nucleus Innervating External Urethral Sphincter: HRP Tracing Method and Zinc Selenium Autometallography (바깥요도조임근을 지배하는 Onuf 핵에서 관찰된 Zinc 함유 신경종말: HRP 추적법 및 zinc selenium 조직화학법)

  • Lee, Bo-Ye;Kim, Yi-Suk;Lee, Boeb-Y.;Lee, Hyun-Sook;Tak, Gye-Rae;Lee, Young-Il;Lee, Jeoug-Yeol;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2006
  • Onuf's nucleus, which is located in the ventral horn, has been known to innervate the striated muscles of the urethral and anal sphincter muscles via the pudendal nerve Onuf's nuclei are resistant to pathologic condition such as poliovirus. The reason why the motor neurons in Onuf's nucleus are less degenerated is not certain until now. The present study aims at updating the microscopical characteristics including its location the Onuf's nucleus innervating the external urethral sphincter, and ultrastructures of the zinc-enriched (ZEN) terminals synaptically-contacting with Onuf's motor neurons in the rat spinal gray matter by using HRP tracing method and zinc selenium autometallography, respectively. Based on HRP tracing method, Onuf's nuclei were located adjacent lateral dendritic projections of the ventral horn. Their shape was almost round at lumbar level, but oval at sacral segment of spinal cord. In size, their somata were smaller than that of other motor nuclei. In AMG stained sections, Onuf's nuclei were innervated by highly concentrated ZEN terminals, and contained small and middle-sized ZEN, but totally void of large ZEN terminals. AMG silver grains were confined to presynaptic ZEN terminals against dendritic elements and somata of the Onuf's motor neurons. A majority of the ZEN terminals contained flattened synaptic vesicles and made symmetrical synaptic specializations.

Characterizations of Precipitated Zinc Powder Produced by Selective Leaching Method

  • Marwa F. Abd;F. F. Sayyid;Sami I. Jafar Al-rubaiey
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-63
    • /
    • 2024
  • This work investigated the influence of concentration and applied potential on the characteristics of zinc powder (purity, apparent density, morphology, particle size distribution, and particle zeta potential) produced by the electrochemical process from waste brass. High-purity zinc powder is obtained using selective leaching of industrial brass waste in acidic, neutral, and alkaline solutions. The free immersion method with and without voltage using linear polarization technique is used. In the electrochemical process, hydrochloric acid HCl in three different concentrations (0.1, 0.2, and 0.3) M is used. The time and the distance between the electrodes are set to be 30 min and 3 cm, respectively. It has been found that the percentage purity is 98%, 96%, and 94% for the acidic, neutral, and alkaline solutions, respectively. In addition, the morphology of zinc powder analyzed by SEM was dendritic and mossy. It has been recorded that the purity of zinc increases with the increase of the concentration and applied potential. The highest value of purity for zinc powder was %98.58 in 1000 mV and 0.3M concentration for graphite cathode.

Zinc Porphyrin-Cored Dendrimers; Axial Coordination of Pyridine and Photoinduced Electron Transfer to Methyl Viologen

  • Park, Ji-Eun;Choi, Dae-Ock;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4247-4252
    • /
    • 2011
  • The porphyrin-incorporated arylether dendrimers ZnP-D1 and ZnP-D4 were investigated to discover the influence of dendritic environments for the axial ligation of pyridine and photoinduced electron transfer by methyl viologen. Absorption and fluorescence spectra of ZnP, ZnP-D1, and ZnP-D4 were measured in dichloromethane with the addition of pyridine or methyl viologen dichloride. Axial ligation of pyridine was confirmed by red-shifted absorption spectrum. The complex formation constants $K_f$ (Table 1) for axial coordination of pyridine on ZnP, ZnP-D1, and ZnP-D4 were estimated to be $4.4{\times}10^3\;M^{-1}$, $3.3{\times}10^3\;M^{-1}$, and $1.7{\times}10^3\;M^{-1}$, respectively. The photoinduced electron transfer to methyl viologen dichloride was confirmed by fluorescence quenching. Stern-Volmer constants Ksv for ZnP, ZnP-D1, and ZnP-D4 were calculated to be $2.6{\times}10^3$, $2.5{\times}10^3$, and $2.1{\times}10^3$, respectively. ZnP-D4 surrounded by 4 aryl ether dendrons shows the smallest $K_f$ and Ksv values, with comparison to ZnP and ZnP-D1.

Novel Synthesis of Hydrophilic Dipolar Chromophores using Dendronized Sulfonates

  • Kim, Mi-Rae;Maheswara, Muchchintala;Do, Jung-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.664-672
    • /
    • 2011
  • A series of hydrophilic chromophores was synthesized through introduction of dendritic sulfonate anions using click chemistry. A dendron structure bearing several sulfonate groups enhances hydrophilicity of attached chromophores. A click triazole formation connects chromophores with hydrophilic groups. A neutral trichloroethyl sulfonate has versatile features such as easy introduction, chemical endurance for isolation or storage, and convenient transformation to a hydrophilic anion. Zinc and OH mediated cleavage of trichloroethyl group from the neutral sulfonate undergoes to generate a water-soluble sulfonate anion. The solubility was examined with different counter cations and in different pH media and thus increased with the number of attached sulfonate ion. Two hydrophilic chromophores of stilbene-derived and azobenzene-derived dipolar structures exhibit clear negative and positive solvatochromism in protic solvents, respectively.

Performance Evaluation of Stirrers for Preventing Dendrite Growth on Liquid Cathode (액체음극에서의 금속 수지상 성장 억제를 위한 교반기 성능평가)

  • Kim, Si-Hyung;Yoon, Dal-Seong;You, Young-Jae;Paek, Seung-Woo;Shim, Joon-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • An electrolytic system (zinc anode-gallium cathode) was setup to evaluate the performance of several stirrers prepared for this study, where stirrers have been used to prevent uranium from forming dendrite on the cathode in pyrochemical process. In the case of no-stirring condition, zinc dendrites began to grow on the gallium surface in 1 hour and some dendrite grew out of the cathode crucible around 6 hours. When a rectangular stirrer or a tilt stirrer was rotated, at 40${\sim}$150 rpm, to mix the liquid gallium cathode, dendritic growth of zinc metal was prevented irrespective of revolution speed, but some of the deposits overflowed out of the cathode crucible owing to the large centrifugal forces at 150 rpm. The harrow stirrer did not nearly retard the dendrite growth at 40 rpm, but the dendrite growth was retarded at higher than 100 rpm and the zinc deposits also did not overflow at 150 rpm. Pounder could also prevent the dendrite growth to some extent but it had some difficulties in operation compared with other types of stirrers.

  • PDF