• Title/Summary/Keyword: Dendritic

Search Result 765, Processing Time 0.023 seconds

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

Effects of Co-solvent on Dendritic Lithium Growth Reaction (리튬 덴드라이트의 성장 반응에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 2013
  • This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in 1 mol $dm^{-3}$ (M) $LiPF_6$ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. The DME concentration was found to have a significant effect on the reactions occurring at the electrode. The poor cycleability of the electrodes in the pure PC solution was improved considerably by adding small amounts of DME. This results suggested that the dendritic lithium growth could be suppressed by using co-solvents. After hundredth cycling in the 1 M $LiPF_6$/PC:DME (67:33) solution, almost no dead lithium has been found from the disassembled cell, resulting from suppression of dendritic lithium growth. Scanning electron microscopy revealed that dendritic lithium formation was greatly affected by the ratio of DME. Raman spectroscopy results suggested that the structure of solvated lithium ions is a crucial important factor in suppressing dendritic lithium formation.

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

The Effect of Donor Antigen-pulsed Dendritic Cells on Survival of Skin Allograft in a Rat Model (흰쥐 모델에서 공여항원에 감작된 수지상세포가 피부동종이식의 생착에 미치는 영향)

  • Eun, Seok Chan;Kim, Byung Jun;Kim, Jin Hee;Heo, Chan Yeong;Baek, Rong Min;Chang, Hak;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.367-372
    • /
    • 2008
  • Purpose: Prevention of acute rejection in skin allografts without continuous immunosuppression lacks reports in worldwide literature. Needs for chronic immunosuppression preclude the use of tissue allograft as a routine surgical reconstructive option. Recently dendritic cells(DC) gained considerable attention as antigen presenting cells that are also capable of immunologic tolerance induction. This study assesses the effects of alloantigen-pulsed dendritic cells in induction of survival increase in a rat skin allograft model. Methods: Recipient-derived dendritic cells were harvested from rat whole blood and cultured with GM-CSF(200 ng/mL) and IL-4(8 ng/mL) for 2 weeks. Then donor-specific alloantigen pulsed dendritic cells were reinjected into tail vein before skin graft. The rat dorsal skin allografts were transplanted in 5 subgroups. Groups: I) untreated, II) anti-lymphocyte serum(ALS, 0.5 mL), III) FK-506(2 mg/kg), IV) DCp, VI) DCp and FK-506. Graft appearance challenges were assessed postoperatively. Results: The group V(DC and FK-506 treated) showed longest graft survival rate(23.5 days) than other groups; untreated(5.8 days), ALS(7.2 days), FK-506 (17.5 days), DCp(12.2 days). Conclusion: Donor antigen pulsed host dendritic cell combined with short-term immunosuppression prolong skin allograft survival and has potential therapeutic application for induction of donor antigen specific tolerance.

Porous Nickel-Tin Nano-Dendritic Electrode for Rechargeable Lithium Battery (리튬 이차 전지를 위한 다공성 니켈-주석 나노 수지상 전극)

  • Jung, Hye-Ran;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.592-599
    • /
    • 2010
  • A porous nickel-tin nano-dendritic electrode, for use as the anode in a rechargeable lithium battery, has been prepared by using an electrochemical deposition process. The adjustment of the complexing agent content in the deposition bath enabled the nickel-tin alloys to have specific stoichiometries while the amount of acid, as a dynamic template for micro-porous structure, was limited to a certain amount to prevent its undesirable side reaction with the complexing agent. The ratios of nickel to tin in the electro-deposits were nearly identical to the ratios of nickel ion to tin ion in the deposition bath; the particle changed from spherical to dendritic shape according to the tin content in the deposits. The nickel to tin ratio and the dendritic structure were quite uniform throughout the thickness of the deposits. The resulting nickel-tin alloy was reversibly lithiated and delithiated as an anode in rechargeable lithium battery. Furthermore, the resulting anode showed much more stable cycling performance up to 50 cycles, as compared to that resulting from dense electro-deposit with the same atomic composition and from tin electrodeposit with a similar porous structure. From the results, it is expected that highly-porous nickel-tin alloys presented in this work could provide a promising option for the high performance anode materials for rechargeable lithium batteries.

Development and Clinical Evaluation of Dendritic Cell Vaccines for HPV Related Cervical Cancer - a Feasibility Study

  • Ramanathan, Priya;Ganeshrajah, Selvaluxmy;Raghanvan, Rajalekshmi Kamalalayam;Singh, Shirley Sundar;Thangarajan, Rajkumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5909-5916
    • /
    • 2014
  • Human papillomavirus infection (HPV) and HPV related immune perturbation play important roles in the development of cervical cancer. Since mature dendritic cells (DCs) are potent antigen-presenting cells (APC), they could be primed by HPV antigens against cervical cancers. In this study we were able to generate, maintain and characterize, both phenotypically and functionally, patient specific dendritic cells in vitro. A randomized Phase I trial with three arms - saline control (arm I), unprimed mature DC (arm II) and autologous tumor lysate primed mature DC (arm III) and fourteen patients was conducted. According to WHO criteria, grade 0 or grade one toxicity was observed in three patients. One patient who received tumor lysate primed dendritic cells and later cis-platin chemotherapy showed a complete clinical response of her large metastatic disease and remained disease free for more than 72 months. Our findings indicate that DC vaccines hold promise as adjuvant sfor cervical cancer treatment and further studies to improve their efficacy need to be conducted.

Facile Synthesis of Dendritic Benzyl Chlorides from Their Alcohols with Methanesulfonyl Chloride/$Et_3N$ (덴드리틱 벤질 클로라이드의 효율적인 합성)

  • Lee, Jae-Wook;Han, Seung-Choul;Kim, Hee-Joo;Kim, Jung-Hwan;Lee, Un-Yup;Kim, Byoung-Ki;Sung, Sae-Reum;Kang, Hwa-Shin;Kim, Ji-Hyeon;Huh, Do-Sung
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.417-421
    • /
    • 2007
  • A successful rapid synthesis of dendritic benzyl chlorides from dendritic benzyl alcohols using methanesulfonyl chloride/$Et_3N$ as activating agents was described. In this method, each dendritic benzyl chloride can be prepared in one pot: no isolation of intermediate mesylated dendrons is required. The key steps in the syntheses of dendritic benzyl chlorides were the mesylation of the hydroxymethyl group followed by the chlorination by in-situ generated triethylammonium chloride.

Inhibitory effect of FLOS CHRYSANTHEMI on the maturation of dendritic cells (감국의 수지상세포의 성숙 억제 효과)

  • Park, Sung-Joo;Choi, Byung-Min;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.127-132
    • /
    • 2007
  • Objectives : FLOS CHRYSANTHEMI (FC) has been reported to possess a variety of pharmacological activities. However, the effect of FC on the dendritic cells has not been determined. Methods : To examine the effect of FC on the immune response, we used several methods such as flow cytometric analyses, enzyme-linked immunosorbent assay. Results : 1. FC inhibited lipopolysacchride (LPS)-induced maturation of bone marrow-derived dendritic cells (BMDC) such as down-regulation of MHC class II and CD40. 2. FC also inhibited uptake of FITC-Dextran in BMDC stimulated with LPS. 3. Furthermore, FC inhibited several kinds of cytokine production such as TNF-a, IL-6 and IL-12 in BMDC. Conclusions : These results suggest that FC plays pivotal role m the development of inflammatory diseases.

  • PDF

The effect of process parameters on copper powder particle size and shape produced by electrolysis method

  • Boz, Mustafa;Hasheminiasari, Masood
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.151-162
    • /
    • 2013
  • In this study, an electrolyzing device for the production of metal powders was designed and fabricated. The production of copper powders was performed using a variety of current densities, anode-cathode distances and power removal times. The effect of these parameters on powder particle size and shape was determined. Particle size was measured using a laser diffraction unit while the powder shape was determined by SEM. Experimental results show that an increase in current density leads to a decrease in powder particle size. In addition particle shape changed from globular dendritic to acicular dendritic with increasing the current density. Distance between the cathode and anode also showed a similar influence on powder particle size and shape. An increase in time of powder removal led to an increase in powder particle size, as the shape changed from acicular dendritic to globular dendritic.