Demonstration-based learning has the advantage that a user can easily teach his/her robot new task knowledge just by demonstrating directly how to perform the task. However, many previous demonstration-based learning techniques used a kind of attribute-value vector model to represent their state spaces and policies. Due to the limitation of this model, they suffered from both low efficiency of the learning process and low reusability of the learned policy. In this paper, we present a new demonstration-based learning method, in which the relational model is adopted in place of the attribute-value model. Applying the relational instance-based learning to the training examples extracted from the records of the user demonstrations, the method derives a relational instance-based policy which can be easily utilized for other similar tasks in the same domain. A relational policy maps a context, represented as a pair of (state, goal), to a corresponding action to be executed. In this paper, we give a detail explanation of our demonstration-based relational policy learning method, and then analyze the effectiveness of our learning method through some experiments using a robot simulator.
A reward function suitable for a task is required to manipulate objects through reinforcement learning. However, it is difficult to design the reward function if the ample information of the objects cannot be obtained. In this study, a demonstration-based object manipulation algorithm called stochastic exploration guided by demonstration (SEGD) is proposed to solve the design problem of the reward function. SEGD is a reinforcement learning algorithm in which a sparse reward explorer (SRE) and an interpolated policy using demonstration (IPD) are added to soft actor-critic (SAC). SRE ensures the training of the critic of SAC by collecting prior data and IPD limits the exploration space by making SEGD's action similar to the expert's action. Through these two algorithms, the SEGD can learn only with the sparse reward of the task without designing the reward function. In order to verify the SEGD, experiments were conducted for three tasks. SEGD showed its effectiveness by showing success rates of more than 96.5% in these experiments.
This study investigated the effective pedagogical strategies for sewing by examining the efficacy of sewing videos as supplemental learning materials and demonstration tools. Sewing videos were created for face-to-face apparel construction courses, and students' opinions on sewing videos as an educational tool were collected. Videos with subtitles were offered to Apparel Construction Course 1, whereas videos with narration and subtitles were offered to Apparel Construction Course 2. As "supplemental learning materials," students rated videos as more effective for learning and satisfying than "documents with text and images." The effectiveness and satisfaction scores for Apparel Construction Course 2 were significantly higher than those for Apparel Construction Course 1. Furthermore, videos were utilized significantly more than documents, and most students preferred videos over documents. The main benefits of videos as supplemental learning materials were repetitive learning at the learner's convenience and the detailed presentation of the sewing process. Students regarded narration as more effective and satisfying than subtitles. Narrations were expected to be offered along with subtitles. As "demonstration tools," students rated videos as more effective for learning and satisfying than traditional "sewing samples." Students preferred "demonstration with videos" to "demonstration with sewing samples." The main benefits of video demonstration were a close-up view, presentation of the entire sewing process, and shorter wait time without the need for group teaching. Students wanted more sewing videos and narrations to be offered, and various sewing machine feet to be used in the videos. Educational methods for sewing were suggested based on student opinions.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.485-486
/
2019
Simulated driving behavior is an important aspect of realistic simulation systems. To simulate natural driving behavior, this paper proposes an imitation learning method based on active learning that combines demonstration and experience. Driving demonstrations are collected from human drivers in a driving simulator. A driving behavior policy is learned from these demonstrations. The driving demonstration dataset is augmented with new demonstrations that the original demonstrations did not contain, in the form of behaviors from another driving behavior policy learned from experience. The final driving behavior policy is learned from an augmented demonstration dataset.
The decision-making by agents in games is commonly based on reinforcement learning. To improve the quality of agents, it is necessary to solve the problems of the time and state space that are required for learning. Such problems can be solved by Macro-Actions, which are defined and executed by a sequence of primitive actions. In this line of research, the learning time is reduced by cutting down the number of policy decisions by agents. Macro-Actions were originally defined as combinations of the same primitive actions. Based on studies that showed the generation of Macro-Actions by learning, Macro-Actions are now thought to consist of diverse kinds of primitive actions. However an enormous amount of learning time and state space are required to generate Macro-Actions. To resolve these issues, we can apply insights from studies on the learning of tasks through Programming by Demonstration (PbD) to generate Macro-Actions that reduce the learning time and state space. In this paper, we propose a method to define and execute Macro-Actions. Macro-Actions are learned from a human subject via PbD and a policy is learned by reinforcement learning. In an experiment, the proposed method was applied to a car simulation to verify the scalability of the proposed method. Data was collected from the driving control of a human subject, and then the Macro-Actions that are required for running a car were generated. Furthermore, the policy that is necessary for driving on a track was learned. The acquisition of Macro-Actions by PbD reduced the driving time by about 16% compared to the case in which Macro-Actions were directly defined by a human subject. In addition, the learning time was also reduced by a faster convergence of the optimum policies.
Journal of the Architectural Institute of Korea Planning & Design
/
v.36
no.3
/
pp.49-58
/
2020
Based on Merrill's instructional theory, this study pursued to develop a demonstration-based architectural design class operation model for the 3rd year undergraduate students taking a Spring semester design studio class. The model was designed and used particularly to improve architectural thinking abilities of under-motivated learners. Learning effects of the model were examined based on the preliminary data obtained for 3 consecutive years, 2017 through 2019. A total of 52 students were participated in the class and observed by the instructor. Once developed, the model has been continually updated and improved based on results of each class operation. Five types of demo. were used in the model. First, direct contacts of the instructor with under-motivated learners were turned out to be the most preferred demo(demo. 4), while watching and listening of the demo(demo.3) between the instructor and motivated learners taking place in class was ranked at the second place. Belief of under-motivated learners on the instructor as a professional should be highly valued for improving their architectural thinking abilities. Second, motivated peers' direct help for under-motivated ones was placed in the third rank. Social attitudes of under-motivated learners towards accepting motivated ones' helps were determined the particular demo's appropriateness. Third, a set of guidelines for operating the model in undergraduate design studio classes were developed and suggested.
This study explored students' online fashion studio class experiences, and investigated the factors affecting their class satisfaction. An online survey of college students who were enrolled in online studio classes within apparel and fashion-related departments during the spring of 2020 was conducted in June 2020. Responses from a total of 213 participants were included in the final data. Respondents rated lecture clips as the most useful, followed by teacher demonstration and feedback, PowerPoint (PPT) supplements, and Q&As. Frequently mentioned areas of improvement were online platform stability and video quality. Many respondents also stated that more streamlined teacher-student communication channels, immediate and meticulous teacher feedback, the adoption of course contents developed specifically for an online environment, and provisions for equipment usage would be desirable. Student satisfaction of an online fashion design studio class was significantly affected by teaching presence, social presence, online learning system stability, perceived usefulness of teacher's demonstration, and affective response toward COVID-19. Students satisfaction of an online garment construction studio class was significantly affected by teaching and social presence, online learning system stability, and perceived usefulness of teacher's demonstration. Based on these findings, we recommend developing teaching contents and methods that allow students to feel included in class and establish an online system with various functions to enhance the sense of social connection that can enable two-way communication.
Journal of the Korean Society for Precision Engineering
/
v.14
no.4
/
pp.46-55
/
1997
This paper presents the development of intelligent performance management of computer communication networks for larger-scale integrated systems and the demonstration of its efficacy using computer simula- tion. The innermost core of the performance management is based on fuzzy set theory. This fuzzy perfor- mance manager has learning ability by using principles of neuro-fuzzy model, neuralnetwork, genetic algo- rithm(GA). Two types of performance managers are described in this paper. One is the Neuro-Fuzzy Per- formance Manager(NFPM) of which learning ability is based on the conventional gradient method, and the other is GA-based Neuro-Fuzzy Performance Manager(GNFPM)with its learning ability based on a genetic algorithm. These performance managers have been evaluated via discrete event simulation of a computer network.
The purpose of this study was to investigate the enhancing creative competency and changes in academic challenge for the pre-service teachers. For this purpose, 94 pre-service teachers participated in project learning through the preparation of the convergence instruction and the class demonstration during one semester. The pre and post questionnaire survey was conducted the measurement of creative leader competence and K-NSSE for academic challenge. Analysis of data was performed using the IBM SPSS 18.0 program for the corresponding sample t test. The creative competency included 'higher mental thinking', 'problem solving', 'curiosity', 'sensitivity' 'task commitment', 'the pursuit of social value', and 'co-operations and considerations'. This results was significant(p< .05). Academic challenge, high-order learning domain and learning strategies domain were significant(p< .05). Based on this, in order to generalize the convergence education and convergence lesson, it is necessary to design various convergence lessons and practice study to make a plan and practice it. In addition, the implications for the necessity of correcting and supplementing the effects after repeated convergence lessons were discussed.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.05a
/
pp.327-331
/
2018
The purpose of this study was to design a competence teaching-learning model that could help college students improve their computational thinking among core competences in SW education. A competence teaching-learning model, UDDPAAP (Unplugged-Demonstration-Decomposition-Pattern Recognition-Abstraction-Algorithm-Programming), was designed by analyzing competences of learners with no experience in software coding, by reconstructing DMM, DDD, and DPAA among the five existing SW-based teaching-learning models, and by analyzing unplugged activity and the Bebras challenge computational thinking scale carefully. The unplugged activity partially adapted to instruction for college students and some items chosen from the Bebras challenge computational thinking scale were applied to the existing teaching-learning model. To determine the effects of the study, pretest was conducted in freshmen for computational thinking and self-confidence on the basis of the experience in SW and computer information literacy education, and posttest following instruction applying the UDDPAAP teaching-learning model. The students provided with SW education based on the UDDPAAP teaching-learning model saw their computational thinking competence improved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.