• Title/Summary/Keyword: Demonstrate System

Search Result 4,322, Processing Time 0.034 seconds

Demonstration of Propulsion System for Microsatellite Based on Hydrogen Peroxide in SOHLA-2L Project

  • Sahara, Hironori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.235-242
    • /
    • 2008
  • An innovative Panel ExTension SATellite(PETSAT) and propulsion system for PETSAT, are presented in this paper. First, we outline what PETSAT is. Next, based on PETSAT ethos, design policy of the propulsion system is provided. According to the policy, we designed propulsion system and concretely estimated and assembled mono-propellant and bi-propellant systems, and it indicated that mono-propellant propulsion with 50-60 seconds of specific impulse and 1 N of thrust is probable. In the case of bi-propellant, 120-150 seconds of specific impulse is valid even based on the design policy. We conducted captive tests of mono-propellant and bi-propellant propulsions with a breadboard model of propulsion system for PETSAT, and obtained good operations and performances. Based on the test results, we designed and manufactured flight model propulsion system for PETSAT. We are planning to demonstrate it in SOHLA-2L project progressed by the Space Oriented Higashiosaka Leading Association(SOHLA). SOHLA-2L will be the first on-orbit demonstrator of PETSAT in 2008.

  • PDF

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Implementation of Real-time EtherCAT Control System based on Open Source (오픈소스 기반의 실시간 EtherCAT 제어 시스템의 구현)

  • Yunjin Kyung;Dongil Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.281-284
    • /
    • 2023
  • Real-time control communication network system is important for developing defense robots because it affects environmental interaction, performance, and safety. We propose a real-time control communication network using the Xenomai real-time operating system and the open-source EtherCAT master library, SOEM. EtherCAT is an Ethernet-based industrial communication method. It has low latency and many functions such as cable redundancy and distributed clock synchronization. We use Xenomai RTOS and Intel NUC to develop the system. Experimental tests demonstrate the Real-time EtherCAT master implementation, and communication with CiA301-based slave devices. The jitter measurement was conducted to validate the real-time performance of the system. The proposed system shows possibility for real-time robotics applications in various defense robots.

Wi-Fi RSSI Heat Maps Based Indoor Localization System Using Deep Convolutional Neural Networks

  • Poulose, Alwin;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.717-720
    • /
    • 2020
  • An indoor localization system that uses Wi-Fi RSSI signals for localization gives accurate user position results. The conventional Wi-Fi RSSI signal based localization system uses raw RSSI signals from access points (APs) to estimate the user position. However, the RSSI values of a particular location are usually not stable due to the signal propagation in the indoor environments. To reduce the RSSI signal fluctuations, shadow fading, multipath effects and the blockage of Wi-Fi RSSI signals, we propose a Wi-Fi localization system that utilizes the advantages of Wi-Fi RSSI heat maps. The proposed localization system uses a regression model with deep convolutional neural networks (DCNNs) and gives accurate user position results for indoor localization. The experiment results demonstrate the superior performance of the proposed localization system for indoor localization.

  • PDF

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.351-365
    • /
    • 2011
  • This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.

Estimation of Attitude and Position of Moving Objects Using Multi-filtered Inertial Navigation System (이동하는 물체의 자세와 위치를 추정하기 위한 다중 필터 관성 항법 시스템)

  • Hwang, Seo-Young;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2339-2345
    • /
    • 2011
  • This paper proposes a new multi-filtered inertial navigation system to estimate the attitude and position of moving objects. This system has two states, the one is attitude state and the other is position/velocity state. For compensating IMU sensor errors, each of the two states uses a different filter: the attitude state uses the EKF and the position state uses the UPF. The fast and precise characteristics of the EKF have been properly utilized for the attitude estimation, while superior dynamic characteristics of the UPF have been fully adopted for the position estimation. The combination of these two filters in an inertial navigation system improves the system performance to be faster and more accurate. Experimental results demonstrate the superiority of this approach comparing to the conventional ones.

Study on the Structural System Condensation using Multi-level Sub-structuring Scheme in Large-scale Problems (대형 시스템에서의 다단계 부분구조 기법을 이용한 시스템 축소기법에 관한 연구)

  • Baek, Sung-Min;Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.356-361
    • /
    • 2008
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the previous study, we proposed a two-level condensation scheme (TLCS) for the construction of a reduced system. And we have improved previous TLCS with combination of the iterated improved reduced system method (IIRS) to increase accuracy of the higher modes intermediate range. In this study, we apply previous improved TLCS to multi-level sub-structuring scheme. In the first step, the global system is recursively partitioned into a hierarchy of sub-domain. In second step, each uncoupled sub-domain is condensed by the improved TLCS. After assembly process of each reduced sub-eigenvalue problem, eigen-solution is calculated by Lanczos method (ARPACK). Finally, Numerical examples demonstrate performance of proposed method.

  • PDF

Livestock Anti-theft System Using Morphological Feature-based Model (형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템)

  • Kim, Jun Hyoung;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

Design of a Robust Adaptive Backstepping Controller for a Chaos System with Disturbances (외란을 포함한 카오스시스템의 강인 적응 백스테핑 제어기 설계)

  • Hyun, Keun-Ho;Ka, Chool-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.119-128
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the chaos system with disturbances. This controller will be applicable to the chaos system of strict-feedback form and utilize the saturation function for decreasing the effect of disturbances derived from unmodelled dynamics and external noise. It shows that backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.