• 제목/요약/키워드: Demand-control model

검색결과 430건 처리시간 0.031초

의료급여비용 증가에 공급자 유인효과가 미치는 영향 (The Impact of Supplier Induced Demand on Increase in Medical Aid Expenditure)

  • 신현웅;윤장호;노연홍;여지영
    • 보건행정학회지
    • /
    • 제24권1호
    • /
    • pp.13-23
    • /
    • 2014
  • Background: A need arises to efficiently control health expenditure for medical aid due to a sharp increase in medical aid expenditure. This study experimently analyzes the impact of physician behavior on medical use for medical aid beneficiaries using supplier induced demand (SID) theory. Methods: This study looks into analyze SID effect using expenditure factor analysis of medical aid for the years between 2003 and 2010 in comparison with health insurance. Moreover, this study analyzes the existence and scale of SID using econometrics modeling with panel data on 16 cities and provinces's health expenditure data for medical aid from 2003 1/4 to 2010 4/4. Results: This study finds that the growth rate of visit days per capita and treatment amount per visit days for medical aid is higher than health insurance. Furthermore, the result of econometrics modeling analysis shows the existence of SID in general hospital, hospital, clinic, oriental clinic. Conclusion: In order to efficiently control expenditure for medical aid, it is required to reinforce macro polices such as the introduction of 'target management' and micro policies such as the strengthen of management on medical institutes in the perspective of suppliers as well as regulations of demanders.

멀티프로세서용 임베디드 시스템을 위한 UML 기반 소프트웨어 모델의 분할 기법 (A Partition Technique of UML-based Software Models for Multi-Processor Embedded Systems)

  • 김종필;홍장의
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.87-98
    • /
    • 2008
  • 임베디드 시스템의 하드웨어 구성요소들에 대한 성능 고도화가 요구됨에 따라 이에 탑재될 소프트웨어의 개발 방법도 영향을 받고 있다. 특히 MPSoC와 같은 고가의 하드웨어 아키텍처에서는 효율적인 자원의 사용 및 성능의 향상을 위해 소프트웨어 측면에서의 고려가 필수적으로 요구된다. 따라서 본 연구에서는 임베디드 소프트웨어 개발과정에서 멀티프로세서 기반의 하드웨어 아키텍처를 고려하는 소프트웨어 태스크의 분할기법을 제시한다. 제시하는 기법은 UML 기반의 소프트웨어 모델을 CBCFG (Constraints-Based Control Flow Graph)로 변환하고, 이를 병렬성과 데이터 의존성을 고려한 소프트웨어 컴포넌트로 분할하는 기법이다. 이러한 기법은 임베디드 소프트웨어의 플랫폼 의존적인 모델 개발과 태스크 성능 예측 등을 위한 자료로 활용할 수 있다.

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

소규모 댐의 저수관리 시스템 개발 (Development of Storage Management System for Small Dams)

  • 김필식;김선주
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

조속기 입력의 변화율을 고려한 최적주파수 제어 (LFC Considering the Changing Rate of Governor Speed)

  • 박영문;유찬수
    • 대한전기학회논문지
    • /
    • 제33권3호
    • /
    • pp.100-105
    • /
    • 1984
  • The optimal Load-Frequency Control law is presented with the performance criterion which includes the changing rate of governor speed. The authors propose two controllers. One is a dynamic controller using the method of state augmentation and the other is a constant gain controller with use of the trace function lemma by Kleinman. For a more practical realization, a reduced-order Luenberger observer is applied in order to identify unmeasurable states and power demand. The control schemees presented here are tested through the model developed by Elgerd, and the usefulness is demonstrated.

  • PDF

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계 (Optimal Design of Batch-Storage Network with Finite Intermediate Storage)

  • 김형민;김규년;이경범
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF

A Study on the Tip Position Control of Flexible Beam by Linear Matrix Inequality

  • Kim, Chang-Hwa;Chu, Man-Suk;Yang, Joo-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.121.2-121
    • /
    • 2001
  • Many of today´s robot are required to perform tasks which demand a high level of accuracy in end-effector positioning. Those rigid robots are very inefficient and slow because its have large and heavy links, In an attempt to solve these problems, a robots using flexible beam were created. But the single-link flexible beam is infinite-dimensional system. Many researchers have proposed controlling such a beam an approximated model consisting of a finite a number of models. In this paper, we start by deriving the analytic model for the dynamics of general single-link beam, and a controller is designed for flexible beam with integral type servo system bases of the linear matrix inequality (LM) technique. To the end, simulation results show that a designed controller guarantees affective vibration control the single-link flexible beam.

  • PDF

로봇 $CO_2$ 아크용접 공정변수를 제어하기 위한 수학적 모델 개발 (Development of Mathematical Models for Control of Process Parameters for Robotic $CO_2$ Arc Welding)

  • 임동엽;박창언;김일수;정영재;손준식;이계정
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1997년도 특별강연 및 추계학술발표 개요집
    • /
    • pp.229-233
    • /
    • 1997
  • The demand to increase productivity and quality, the shortage of skilled labour and the strict health and safety requirements have led to the development of the automated welding process to deal with many of the present problems of welded fabrication. To make effective use of the automated arc welding process, it is imperative that a mathematical model, which can be programmed easily and fed to the robot, should be developed. The objectives of the paper are to develop the mathematical equations (linear and curvilinear) for study of the relationship between process variables and bead geometry by employing a standard statistical package program, SAS and to choose the best model for automation of the $CO_2$ gas arc welding process. Mathematical models developed from experimental results can be employed to control the process variables in order to achieve the desired bead geometry based on weld quality criteria. Also these equations may prove useful and applicable for automatic control system and expert systems.

  • PDF

역할 모델의 적응적 전환을 통한 협업 채집 무리 로봇의 에너지 효율 향상 (Energy Efficient Cooperative Foraging Swarm Robots Using Adaptive Behavioral Model)

  • 이종현;안진웅;안창욱
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-27
    • /
    • 2012
  • We can efficiently collect crops or minerals by operating multi-robot foraging. As foraging spaces become wider, control algorithms demand scalability and reliability. Swarm robotics is a state-of-the-art algorithm on wide foraging spaces due to its advantages, such as self-organization, robustness, and flexibility. However, high initial and operating costs are main barriers in performing multi-robot foraging system. In this paper, we propose a novel method to improve the energy efficiency of the system to reduce operating costs. The idea is to employ a new behavior model regarding role division in concert with the search space division.