• Title/Summary/Keyword: Demand-Supply Model

Search Result 804, Processing Time 0.023 seconds

Sustainability of Olive Flounder Production by the Systems Ecology -II. Simulating the Future of Olive Flounder Aquaculture on the Land- (시스템 생태학적 접근법에 의한 넙치생산의 지속성 평가 -2. 넙치 육상양식산업에 대한 예측-)

  • Kim Nam Kook;Son Ji Ho;Kim Jin Lee;Cho Eun Il;Lee Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.660-665
    • /
    • 2002
  • In Korea, an olive flounder is very popular fish food item. However, due to the increasing human population, the present catches of the olive flounder may not be sufficient to satisfy the present demand. To increase the supply of the olive flounder, aquaculture has been begun. An interest in the aquaculture of the olive flounder has been increased recently because of its characteristics of good growth and high price in the market, However, the productivity of the olive flounder aquaculture depends on economic inputs such as fuels, facilities, and labor. The rapid growths of the olive flounder aquaculture and the concerns about economic and ecological sustainability have focused peoples attention on the aquaculture industry. In this study, an energy systems model was built to simulate the variation of sustainability on the aquaculture of olive flounder, The results of simulation based on calibration data in 1995 show that olive flounder production yield and asset slowly increase to steady state because of the law of supply and demand. The results of simulation based on the variation of oil price show that the more increase the oil price, the more decrease the olive flounder economic yield and asset. Energy sources required for systems determine the sustainability of systems. Conclusionally, the present systems of the olive flounder aquaculture should be transformed to ecological-recycling systems or ecological engineering systems which depend on renewable resources rather than aquaculture systems which depend on fossil fuels, and be harmonized with the fishing fisheries by the sustainable use of renewable resources in the carrying capacity.

Development of a Predictive Model for Groundwater Use (지하수 이용량 추정기법 개발)

  • 우남칠;조민조;김남종
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.297-309
    • /
    • 1994
  • For a total of 210 city and Kun areas in Korea, a model was developed to predict the amount of groundwater use at each area. At first, the total areas were classified into 3 groups by the characteristics of groundwater use: residential(87), industrial(27) and agricultural (96) areas. Among them, type areas, represented by the dominant groundwater usage for typical purposes, were selected: residential(22), industrial(8) and agricultural(32) areas. Data for the various factors possibly related to the groundwater use were statistically analyzed. The factors include, 1) agricultural area, 2) industrial area, 3) adininistrative unit area(city or Kun), 4) population, 5) groundwater capadty for community water supply, 6) average water supply for a person per day, 7) agricultural water-use, 8) industrial water-use, 9) residential wateruse, 10) rates of community water supply. The data were correlated to the total amount of groundwater use, and the correlations tested at the 95% and 99% significance levels. Influential, significantly related, factors were identified from the tests. Using the multiple regression method with the influential factors, predictive equations were drawn to calculate the amount of groundwater use for residential-industrial and agricultural areas, respectively. The equations were calibrated to minimize the RMS(root mean square) of the differences between predicted and observed groundwater use. After the validation with future data, the model can be utilized in the regional development plans to predict the maximum groundwater demand at each area.

  • PDF

The role of the digital culture contents industry in the knowledge economy: An input-output analysis (디지털 문화 콘텐츠 산업이 지식경제사회에 미치는 파급효과 분석)

  • Shin, Yong Jae;Lee, Dong Hyun
    • Knowledge Management Research
    • /
    • v.17 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The digital culture contents is one of the fastest growing industry in Korea and it accounts for 60% of the digital contents industry. This paper attempts to analyze economic impacts of the digital culture contents industry using input-output analysis. This study investigated the production-inducing effect, value-added-inducing effect and employment-inducing effect of the digital culture contents industry based on a demand-driven model. In addition, the study dealt with the supply shortage effect and sectoral price effect of the digital culture contents industry using a supply-driven model and the Leontief price model, including the inter-industry linkage effects of 29 sectors with the digital culture contents industry sector. Some interesting findings were drawn from the study. First, production of 1.0 won in the digital culture contents industry results in production-inducing effect of 2.39542 won, value-added effect of 1.29895 won and employment-inducing effect of 0.39657 persons in other industries. Second, the supply shortage of 1.0 won in the digital culture contents industry prevents other industries from producing 0.56631 won. Third, a 1% increase in the price level of the digital culture contents industry raises the overall price level by 0.06017%. Finally, very high backward linkage effects were found, but forward linkage effects were minimal.

  • PDF

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Water Supply forecast Using Multiple ARMA Model Based on the Analysis of Water Consumption Mode with Wavelet Transform. (Wavelet Transform을 이용한 물수요량의 특성분석 및 다원 ARMA모형을 통한 물수요량예측)

  • Jo, Yong-Jun;Kim, Jong-Mun
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.317-326
    • /
    • 1998
  • Water consumption characteristics on the northern part of Seoul were analyzed using wavelet transform with a base function of Coiflets 5. It turns out that long term evolution mode detected at 212 scale in 1995 was in a shape of hyperbolic tangent over the entire period due to the development of Sanggae resident site. Furthermore, there was seasonal water demand having something to do with economic cycle which reached its peak at the ends of June and December. The amount of this additional consumption was about $1,700\;\textrm{cm}^3/hr$ on June and $500\;\textrm{cm}^3/hr$ on December. It was also shown that the periods of energy containing sinusoidal component were 3.13 day, 33.33 hr, 23.98 hr and 12 hr, respectively, and the amplitude of 23.98 hr component was the most humongous. The components of relatively short frequency detected at $2^i$[i = 1,2,…12] scale were following Gaussian PDF. The most reliable predictive models are multiple AR[32,16,23] and ARMA[20, 16, 10, 23] which the input of temperature from the view point of minimized predictive error, mutual independence or residuals and the availableness of reliable meteorological data. The predicted values of water supply were quite consistent with the measured data which cast a possibility of the deployment of the predictive model developed in this study for the optimal management of water supply facilities.

  • PDF

The Estimation of Sand Dam Storage using a Watershed Hydrologic Model and Reservoir Routing Method (유역 수문모형과 저수지 추적기법을 연계한 샌드댐 저류량 산정)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Choi, Jung-Ryel
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.541-552
    • /
    • 2018
  • The implementation of drought measures in the upstream areas of river basins is seldom considered with respect to water supply. However, the demand for such measures is increasing rapidly owing to the occurrence of severe droughts, and interventions on streams and the water supply are needed. Physical interventions are an option to prevent streams from becoming dry and to maintain stream water flow, but dam construction is challenging because of environmental and ecological considerations. Here, a feasibility study was conducted to assess the potential effects of sand dams, which are widely used in arid regions in Africa. The SWAT-K model, which is a hydrologic model used for Korean watersheds, is used to estimate the flow rate of water in an ungauged watershed. The changes in water storage of the sand-dammed reservoir and in downstream flow rates are estimated for two types of sand dam (natural and dredged). The results show that sand dams are capable of increasing the downstream flow rate during normal conditions and of mitigating water supply problems caused by the withdrawal of water during drought periods.

Designs for Self-enforcing International Environmental Coordination (원유공급 위기의 경제적 효과에 관한 연구)

  • Cho, Gyeong Lyeob;Sonn, Yang-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.16 no.1
    • /
    • pp.27-63
    • /
    • 2007
  • Using the CGE model, this paper investigates economic impacts of a shortage in crude oil resulting from voluntary export restraints, OPEC's agreement of a cut in oil production, and/or a storing on speculation. Unlike most previous studies considering oil price as the unpredictable variable, this study constructs the model to determine the oil price endogenously under the condition of an insufficient supply of crude oil. According to IEA's extraordinary steps for a shortage of crude oil, we investigate an economic impact of 7~12% shortage below the level of business as usual. The results show that oil price soars by 17.3~33.5%, the rate of economic growth falls by 0.52~0.96%p, and the consumer price index(CPI) rises by 0.8~1.51%p. These results imply that increasing in 1%p of oil price results in decreasing in 0.03%p of economic growth and increasing in 0.045%p of consumer price index. The production of electricity declines because of the increase in production cost. A shortage of crude oil has an effect on sources of electricity. Most reduction in electricity generation occurs from the reduction in the thermal power generation which is highly dependent on crude oil. The shortage of crude oil causes demand for petroleum to significantly decline but demand for coal and heat to increase because of the substitution effect with petroleum. Demand for gas rise in the first year but falls from the second year.

  • PDF

A Study on the Business Model for Value Added Petroleum Logistics in Northeast Asia (동북아 부가가치 석유물류 비즈니스 모델에 관한 연구)

  • Park Ji Woong;Lee Choong Bae
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.1
    • /
    • pp.149-172
    • /
    • 2023
  • In the Northeast Asian region, including Korea, China, and Japan, with rapid economic growth since the 1990s, intra-regional oil logistics has been increasing. Under such external circumstances, Korea has been pursuing a policy to become a Northeast Asian petroleum logistics hub since the mid-2000s. In order to become a Northeast Asian logistics hub, it is important to establish and promote a business model to promote the value-added oil logistics business. This study aims to propose policies and practical implications for increasing petroleum logistics by analyzing Korea's petroleum logistics business model in Northeast Asia. The results of case analysis through interviews with 23 tank terminal companies are as follows. First, most of the oil storage tank terminal companies interviewed are conducting value-added petroleum logistics such as blending, breaking bulk, and consolidation etc. Second, value-added petroleum logistics is caused by an imbalance in supply and demand among neighboring countries in Northeast Asia. In particular, there is a high demand for breaking bulk and blending connecting Japan, Oceania, the United States, and South America. Third, it is necessary to promote the promotion of value-added logistics by improving infrastructure, institutions, and regulations in response to the demand for value-added petroleum logistics, which will greatly contribute to Korea's policy for being Northeast Asian oil hub.

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.

Analysis of components and applications of major crop models for nutrient management in agricultural land

  • Lee, Seul-Bi;Lim, Jung-Eun;Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Deog-Bae;Hong, Suk-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.537-546
    • /
    • 2016
  • The development of models for agriculture systems, especially for crop production, has supported the prediction of crop yields under various environmental change scenarios and the selection of better crop species or cultivar. Crop models could be used as tools for supporting reasonable nutrient management approaches for agricultural land. This paper outlines the simplified structure of main crop models (crop growth model, crop-soil model, and crop-soil-environment model) frequently used in agricultural systems and shows diverse application of their simulated results. Crop growth models such as LINTUL, SUCROS, could provide simulated data for daily growth, potential production, and photosynthesis assimilate partitioning to various organs with different physiological stages, and for evaluating crop nutrient demand. Crop-Soil models (DSSAT, APSIM, WOFOST, QUEFTS) simulate growth, development, and yields of crops; soil processes describing nutrient uptake from root zone; and soil nutrient supply capability, e.g., mineralization/decomposition of soil organic matter. The crop model built for the DSSAT family software has limitations in spatial variability due to its simulation mechanism based on a single homogeneous field unit. To introduce well-performing crop models, the potential applications for crop-soil-environment models such as DSSAT, APSIM, or even a newly designed model, should first be compared. The parameterization of various crops under different cultivation conditions like those of intensive farming systems common in Korea, shortened crop growth period, should be considered as well as various resource inputs.