이 논문은 1980:1-2006:3분기간 자료를 이용하여 한국의 광의통화(M2)와 광의유동성(L)에 대한 개방형 화폐수요함수를 계절성과 외환위기를 고려한 공적분 검정 및 오차수정모형으로 분석하였다. 실증 분석결과 한국의 광의통화(M2)와 광의유동성(L)은 실질소득, 회사채수익률, 인플레이션 불확실성, 실질실효환율, 환율불확실성, LIBOR금리간 공적분 관계가 존재하여 이들 변수들 사이에 안정적인 장기균형관계가 성립하는 것으로 나타났다. 또한 광의통화(M2)변동은 환율불확실성 변화에 가장 크게 의존하며 LIBOR금리 변화와 미세하지만 실질실효환율 및 소득변화에 의해 영향을 받는 것으로 나타났다. 광의유동성(L)의 경우에는 환율불확실성의 변화에 가장 크게 의존하며 광의유동성 수요와 실질소득변화에 의해서도 영향을 받는 것으로 나타났으나, 회사채수익률, 인플레이션불확실성, 실질실효환율, LIBOR금리 등의 변화에 의해서는 영향을 받지 않는 것으로 밝혀졌다.
It is a plan the government increases a railroad section SOC investment, and to activate railroad construction while a railroad wins the spotlight with green transportation. But an error of the demand forecast that is a base of a railroad investment evaluation follows in occurring big, there is it with an operation with an obstacle of a railroad investment. Case of the Incheon International Airport Railroad which went into operation recently, While a present transportation demand showed about 10% than a demand forecasted in a past conference, it was magnified in a social problem. A lot of research was gone on in road project about traffic demand forecast and error, a study to find out the error cause is an insufficient situation although errors of a railroad occurs big. So, this study looked for errors and causes about trip generation model and modes sharing model of railroad demand forecast but it was defined causes so that it can occur similar problems in the future. Especially it investigated causes after comparing rate of development plan for the realization and O/D size in trip generation model and after comparing rate of modes sharing of past and current and conducting a survey for airport users. In conclusion, it suggested method to reduce errors of railroad demand forecasting in the future.
Purpose : This study was to develop a strategy for modeling future workforce projections to serve as a basis for analyzing annual supply of and demand for physical therapists across the South Korea into 2030. Methods : In-and-out movement model was used to project the supply of physical therapists. The demand was projected according to the demand-based method which consists of four-stages such as estimation of the utilization rate of the base year, forecasting of health care utilization of the target years, forecasting of the requirements of clinical physical therapists and non-clinical physical therapists based on the projected physical therapists. Results : Based on the current productivity standards, there will be oversupply of 39,007 to 40,875 physical therapists under the demand scenario of average rate in 2030, undersupply of 44,663 to 49,885 under the demand scenario of logistic model, oversupply of 16,378 to 19,100 under the demand scenario of logarithm, and oversupply of 18,185 to 20,839 under the demand scenario of auto-regressive moving average (ARIMA) model in 2030. Conclusion : The result of this projection suggests that the direction and degree of supply of and demand for physical therapists varied depending on physical therapists productivity and utilization growth scenarios. However, the need for introduction of a professional physical therapist system and the need to provide long-term care rehabilitation services are actively being discussed in entering the aging society. If community rehabilitation programs for rehabilitation of disabled people and the elderly are activated, the demand of physical therapists will increase, especially for elderly people. Therefore, healthcare policy should focus on establishing rehabilitation service infrastructure suitable for an aging society, providing high-quality physical therapy services, and effective utilization of physical therapists.
A new intelligent power network (Smart Grid) that grafts some new technologies, such as the extension of the new and reproducible energy, electric motors, and electric storages, onto the regulation of green house gases according to the recent convention on climate changes has been actively promoted. As establishing such an intelligent power network, it is possible to implement a real-time rate system according to the change from the conventional single directional information transmission to the bidirectional information transmission. Such a real-time rate system can provide power during the chip rate hour by avoiding the high rate hour although customers use the same level of power through providing such real-time rate information including power generation costs. In this study, the establishment of an operating system that makes an effective use of the real-time rate system and its operation method are to be proposed.
본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.
This paper deals with demand forecasting of parts in an automobile model which has been extinct. It is important to estimate how much inventory of each part in the extinct model should be stocked because production lines of some parts may be replaced by new ones although there is still demands for the model. Furthermore, in some countries, there is a strong regulation that the automobile manufacturing company should provide customers with auto parts for several years whenever they are requested. The major characteristic of automobile parts demand forecasting is that there exists a close correlation between the number of running cars and the demand of each part. In this sense, the total demand of each part in a year is determined by two factors, the total number of running cars in that year and the failure rate of the part. The total number of running cars in year k can be estimated sequentially by the amount of shipped cars and proportion of discarded cars in years 1, 2,$\cdots$, i. However, it is very difficult to estimate the failure rate of each part because available inter-failure time data is not complete. The failure rate is, therefore, determined so as to minimize the mean squared error between the estimated demand and the observed demand of a part in years 1, 2,$\cdots$, i. In this paper, data obtained from a Korean automobile manufacturing company are used to illustrate our model.
The purpose of this study was to consider the energy generation of the building as well as the energy demand of the building in terms of zero energy building design. The reason why the zero energy building viewpoint should be discussed is that direction of the building, heat transfer rate of the building, and the S/V ratio of the building are variables related to energy demand and solar panels installed on the building roof and building envelope are variables related to energy generation. This study proceeded as follows; Firstly, the simulation model of large office and elementary school has the same mutual volume and total floor area, and the each floor area and number of floors are adjusted so that the S/V ratio is different. To the next, the energy demand and energy generation of the simulation model were derived based on the meteorological data of Seoul, Daejeon, Busan. Finally, energy demand, energy generation, and final energy demand were compared with heat transfer rate, S/V ratio, building type, region, and orientation. The results of this study is that consideration of solar power generation in terms of energy generation should be taken into consideration at the same time in consideration of the heat transfer rate, the shape, the region and the direction of the zero energy building design.
The present paper deals with an economic order quan-tity model for items deteriorating at some constant rate with demand changing at a known and at a random point of time in the fixed pro-duction cycle.
본 연구에서는 기존 열수요 예측 시스템이 공휴일과 같은 특정 일자의 열수요 예측율이 저하되는 문제점을 개선하기 위해 새로운 모델을 제안한다. 제안된 모델은 사계절 혼합형 신경망 모델(Four Season Mixed Heat Demand Prediction Neural Network Model)로서 열수요 예측율 상승하였고, 특히 예측일 유형별(평일/주말/공휴일) 열수요 예측율이 크게 증가하였다. 제안된 모델은 다음과 같은 과정을 통해 선정되었다. 특정 계절에 예측일 유형별로 고른 오차를 갖는 모델을 선정하여 전체 예측 모델을 구성한다. 학습 시간의 단축과 과도학습을 방지하기 위해 구조적으로 단순화된 서로 다른 4개의 모델을 각각 학습한 후에 다양한 조합을 통해 최적의 예측 오차를 보여주는 모델을 선정하였다. 모델의 출력은 예측일의 24시간의 시간대별 열수요이며 총합은 일일 총열수요이다. 이 예측값을 통해 효율적인 열공급 계획을 수립 할 수 있으며, 목적에 따라 출력값을 선택하여 활용할 수 있다. 제안된 모델의 일일 열 총수요 예측의 경우, 전체 MAPE(Mean Absolute Percentage Error, 평균 절대 비율 오차)가 개별 모델의 5.3~6.1%에서 5.2%로 향상되었고, 공휴일 열수요예측은 4.9~7.9%에서 2.9%로 크게 개선되었다. 본 연구에서는 한국 지역난방공사에서 제공한 특정 아파트 단지의 34개월 분량의(2015년 1월~ 2017년10월) 시간단위 열수요 데이터를 활용하였다.
In this paper, a new probabilistic generation modeling method which can address the characteristics of changed electricity industry is proposed. The major contribution of this paper can be captured in the development of a probabilistic generation modeling considering generator maintenance outage and in the classification of market demand into multiple demand clusters for the applications to electricity markets. Conventional forced outage rates of generators are conceptually combined with maintenance outage of generators and, consequently, effective outage rates of generators are newly defined in order to properly address the probabilistic characteristic of generation in electricity markets. Then, original market demands are classified into several distinct demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the original demand. We have found that generators have different effective outage rates values at each classified demand cluster, depending on the market situation. From this, therefore, it can be seen that electricity markets can also be classified into several groups which show similar patterns and that the fundamental characteristics of power systems can be more efficiently analyzed in electricity markets perspectives, for this classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.