• Title/Summary/Keyword: Demand of Heating and Cooling Energy

Search Result 87, Processing Time 0.031 seconds

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

A study on analysis of energy consumption of Detached house by U-value and SCs of windows and Building Orientation (창의 종류 및 차폐계수 변화와 건물 향에 따른 단독주택의 에너지요구량 분석)

  • Jeong, Su-Hui;Park, Hyo-Sun;Lee, Byung-Yun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.96-103
    • /
    • 2012
  • Annual energy consumption in detached houses are affected mainly by thermal performance of envelope. In particular the performance of glasses are critical due to global wanning and climatic change. Therefore, this research analyzes annual consumption of cooling and heating energy with various combination of U-value, shading coefficient and building orientation. The simulation results shows that shading coefficient of glazing contributes to the changes of proportion of heating and cooling energy demand and the optimized shading coefficient for minimizing energy consumption varies with buildings orientation.

Energy Economic Analysis of Standard Rural House Model with PV System (PV 시스템이 적용된 농어촌 주택 표준모델의 에너지 경제성 분석)

  • Lee, Chan Kyu;Kim, Woo Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1540-1547
    • /
    • 2013
  • The energy economic analysis of the standard rural house model with PV system was performed based on annual energy demand calculation using the EnergyPlus to contribute in reducing building energy which occupies 25% of national energy consumption and in developing a low-energy & eco-friendly house model. Two types of PV system installation was considered to cover electricity demand for cooling, electric, and heating devices. For the selected house model, heating energy demand is 7 times higher than cooling energy demand. For the Case1, it is favorable to use electricity from PV system for cooling and electric devices and to sell surplus electricity. For the Case2, it is favorable to use electricity from PV system for cooling, electricity and heating devices and to sell surplus electricity. Considering the installation cost of PV system and heat pump air conditioning system, the break-even point of Case1 and Case2 are about 13 and 11 years respectively. Although the installation cost of Case2 is more expensive, Case2 provides three times more profit than Case1 after the break-even point. Because the expected average life time of the selected PV system is 25 years, Case2 is more favorable option for the given standard rural house model.

Energy demand analysis according to window size and performance for Korean multi-family buildings

  • Huh, Jung-Ho;Mun, Sun-Hye
    • Architectural research
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2013
  • Special attention is required for the design of windows due to their high thermal vulnerability. This paper examines the problems that might arise in the application of the u-value, by reflecting the changes in the u-value of the window, depending on the window-to-wall ratio obtained in an energy demand analysis. Research indicates that the u-value of a window increases with an increase in the difference between the u-values of the frames and the glass. Relative to the changes in the u-value of the windows, the energy demand varied from 1.3% to 9.3%. Windows with a g-value of 0.3 or 0.5 displayed a higher energy demand than windows with a g-value of 0.7. Therefore, when the difference between the performance of the glass and the frame is significant, especially when the g-value is small, a modified heat transmission coefficient should be applied to the window size during the evaluation of the building energy demand.

The Improvement of Building Envelope Performance in Existing School Building (기존 학교 건물의 외피 성능 개선 방안에 관한 연구)

  • Bang, Ah-Young;Park, Se-Hyeon;Kim, Jin-Hee;Kim, Young-Jae;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

Improvement Method of Regional Insulation Standard through the Regional Heating Energy Demand Analysis (권역별 난방에너지 요구량 분석을 통한 단열기준 개선방안)

  • Kim, Jeong-Gook;Ahn, Byung-Lip;Jang, Cheol-Yong;Jeong, Hak-Geun;Haan, Chan-Hoon
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • The effect of climate change has influenced humanity and ecosystem with tremendous changes in temperature. For the past 150 years, the national annual average temperature is 0.6 degree increased and the heating degree day reduced from April to November. However, December to January, the climate change was generated and the heating degree day increased. The blackout occured in 2011 and 2012 by increasing electricity consumption of heating and cooling equipment to the effects of climate change. That is because heating load accounted for 20% of building electric use. In this study, strengthening measures to reduce heating energy consumption is presented due to climate change in winter since 1980 to prevent blackout and reliable power supply for the building energy-saving design standards by Meteorological data provided by the National Weather Service were calculated using the heating degree days in order to present eighteen cities from 1980 to 2012. Insulation standards are presented to prevent black-out by the heating degree days. the heating energy demand was reduced almost 6% including 10% in Central, 5% in South and Jeju area based on strengthening of the insulation. It is applied to the entire country an annual economic effect of 250 billion won, and black-out can be prevented.

A Study on the Economic Benefit of Urban Parking Lot Tree Shading -In the Case of University of California Davis Parking Lot- (도시 주차장내 수목그늘의 경제적 이익 연구 -미국 캘리포니아 데이비스 대학 주차장을 사례로-)

  • Jang Dong-Su;McPherson E. G.
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.98-108
    • /
    • 2006
  • The climate of urban area is an unstable type with considerable seasonal variation in precipitation wind speed, and temperature and it grows worse. Besides, ozone is a serious air pollutant in most of large cities. So worldwide, some of large cities are investing in forestry options to offset their climate problems, but lack of information has hindered comparisons of urban un cost effectiveness to other options. This research intends to study the economic benefits of tree shading of 19 parking lots in UCD campus. The economic benefits of tree shading are air conditioning savings, air quality, stormwater run-off, and other benefits. Especially, this study focuses how much the economic benefit of parking lot shading has been increased from 1995 to 2003 year by aerophoto. Some data on dimensions of parking lots and the number, size, tree species, and location of trees around each parking lot was inventoried. Two aerophotos(1995,2003) were used in order to analyze the increasement of tree canopy in 19 parking lots for 8 years. However, increasing coverage of trees and managing them for healthy growth would not be sufficient for avoiding adverse impacts by future climate change. Additional measures should be followed such as an increase of energy use efficiency and development of substitute energy. For example, coverage of trees help to save cooling energy by blocking solar radiation reaching parking cars and building structures through shading, and creating cool micro-climates through evapotranspiration. They also reduce heating demand by decreasing air infiltration and heat conduction out of the interior of buildings. Proper arrangement of vegetation over the parking lots can reduce cooling and heating costs. So proper planting design around hard space paving including species selection and location can significantly save cooling and heating energy. And a reduction in car and building's heating and cooling costs results in the reduction in energy demand which causes to emissions of air pollutants. Total increased tree canopy from 1995 to 2003 is $8,470.45m^2$ and the economic benefits is US$ 5,282.10. The economic benefit of one tree has been US$ 7.21 for 8 years. And an annually increased benefit is US$ 0.9 per a tree. If this kind of study is applied to studying the economic benefits of tree canopy in parking lots of Korea, it could result in guidelines of tree planting of parking lots. Because the trees selected for planting in parking lots were not suitable for an environment, the guidelines should contain a recommended list of trees. The guidelines should propose the shading percentage of parking lot when we plan a parking lot and contain the maintenance of trees in order to maximize the economic benefits of tree canopy.

A Study on the optimized Performance Designing of the Window of the Apartment based on the Annual Energy Demand Analysis according to the Azimuth Angle applying the Solar Heat Gain Coefficient of the Window (창호에 SHGC를 반영한 공동주택의 방위각별 에너지 효율성 평가를 통한 합리적인 창호 계획 방안 연구)

  • Lee, Jang-bum
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.25-34
    • /
    • 2019
  • It is important to design windows in a reasonable way considering the performance characteristics of the elements of the window rather than just to increase the thermal energy performance of the window. In this study, the Heat-transfer Coefficient as insulation performance of the windows and together with the grade of the glass's SHGC (Solar Heat Gain Coefficient) were analyzed to relate to the energy efficiency performance of the building by azimuth angle. Based on this basic study, the Heat-transfer Coefficient of windows and the SHGC rating of glass were applied to the unit plan of apartment building, and the Heating and Cooling Demand were analyzed by azimuth angle. Apartment plan types were divided into 2 types of Non-extension and extension of balcony. The designPH analysis data derived from the variant of the Heat-transfer Coefficient and SHGC, were put into PHPP(Passive House Planning Package) to analyze precisely the energy efficiency(Heating and Cooling Demands) of the building by azimuth angle. In addition, assuming the 'ㅁ' shape layout, energy efficiency performance and potential of PV Panel installation also were analyzed by floors and azimuth angle, reflecting the shading effects by surrounding buildings. As the results of the study, the effect of Heat Gain by SHGC was greater than Heat Loss due to the Heat-transfer Coefficient. So it is more effective to increase SHGC to satisfy the same Heating Demand, and increasing SHGC made possible to design windows with low Heat-transfer Coefficient. It was also revealed that the difference in annual Heating and Cooling Demands between the low, mid and high floor households is significantly high. In addition to it, the installation of PV Panel in the form of a shading canopy over the window reduces the Cooling Load while at the same time producing electricity, and also confirmed that absolute thermal energy efficiency could not be maximized without controlling the thermal bridge and ventilation problems as important heat loss factors.

Study on the Heat Performance of CNT/carbon Fiber Plane Heater (탄소계 면상발열체 발열 특성 연구)

  • Ko, Yeongung;Kang, Yeongsik;Chung, Yongsik
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Electrical energy is used for heating and cooling because electric cars do not have engines and cooling water. The downside is that when the heating and cooling system is applied to electric vehicles, about 40 percent of the energy is spent on heating and cooling, which is less efficient in winter. This has increased demand for electric vehicle battery efficiency. In this study, the condensation and dispersion of carbon nanotubes were controlled, and carbon fibers and composite slurry were manufactured without binders to manufacture paper. Manufactured by content showed the highest heat generation characteristic at 143℃ with a carbon fiber content ratio of 20wt% and confirmed that the heat temperature rises with increasing pressure. The plane heaters made through this study can be applied to a variety of products other than electric vehicles because they can be simplified by process and high temperature.

Impact of future climate change on UK building performance

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.203-227
    • /
    • 2013
  • Global demand for dwelling energy and implications of changing climatic conditions on buildings confront the built environment to build sustainable dwellings. This study investigates the variability of future climatic conditions on newly built detached dwellings in the UK. Series of energy modelling and simulations are performed on ten detached houses to evaluate and predict the impact of varying future climatic patterns on five building performance indicators. The study identifies and quantifies a consistent declining trend of building performance which is in consonance with current scientific knowledge of annual temperature change prediction in relations to long term climatic variation. The average percentage decrease for the annual energy consumption was predicted to be 2.80, 6.60 and 10.56 for 2020s, 2050s and 2080s time lines respectively. A similar declining trend in the case of annual natural gas consumption was 4.24, 9.98 and 16.1, and that for building emission rate and heating demand were 2.27, 5.49 and 8.72 and 7.82, 18.43 and 29.46 respectively. The study further analyse future heating and cooling demands of the three warmest months of the year and ascertain future variance in relative humidity and indoor temperature which might necessitate the use of room cooling systems to provide thermal comfort.