• Title/Summary/Keyword: Demand forecasting

Search Result 799, Processing Time 0.029 seconds

Econometric Study on Forecasting Demand Response in Smart Grid (스마트그리드 수요반응 추정을 위한 계량경제학적 방법에 관한 연구)

  • Kang, Dong Joo;Park, Sunju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.133-142
    • /
    • 2012
  • Cournot model is one of representative models among many game theoretic approaches available for analyzing competitive market models. Recent years have witnessed various kinds of attempts to model competitive electricity markets using the Cournot model. Cournot model is appropriate for oligopoly market which is one characteristic of electric power industry requiring huge amount of capital investment. When we use Cournot model for the application to electricity market, it is prerequisite to assume the downward sloping demand curve in the right direction. Generators in oligopoly market could try to maximize their profit by exercising the market power like physical or economic withholding. However advanced electricity markets also have demand side bidding which makes it possible for the demand to respond to the high market price by reducing their consumption. Considering this kind of demand reaction, Generators couldn't abuse their market power. Instead, they try to find out an equilibrium point which is optimal for both sides, generators and demand. This paper suggest a quantitative analysis between market variables based on econometrics for estimating demand responses in smart grid environment.

Characteristics of Electric-Power Use in Residential Building by Family Composition and Their Income Level (거주자 구성유형 및 소득수준에 따른 주거용 건물 내 전력소비성향)

  • Seo, Hyun-Cheol;Hong, Won-Hwa;Nam, Gyeong-Mok
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.

A Regression based Unconstraining Demand Method in Revenue Management (수입관리에서 회귀모형 기반 수요 복원 방법)

  • Lee, JaeJune;Lee, Woojoo;Kim, Junghwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.467-475
    • /
    • 2015
  • Accurate demand forecasting is a crucial component in revenue management(RM). The booking data of departed flights is used to forecast the demand for future departing flights; however, some booking requests that were denied were omitted in the departed flights data. Denied booking requests can be interpreted as censored in statistics. Thus, unconstraining demand is an important issue to forecast the true demands of future flights. Several unconstraining methods have been introduced and a method based on expectation maximization is considered superior. In this study, we propose a new unconstraining method based on a regression model that can entertain such censored data. Through a simulation study, the performance of the proposed method was evaluated with two representative unconstraining methods widely used in RM.

Forecasting Demand of Agricultural Tractor, Riding Type Rice Transplanter and Combine Harvester by using an ARIMA Model

  • Kim, Byounggap;Shin, Seung-Yeoub;Kim, Yu Yong;Yum, Sunghyun;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Purpose: The goal of this study was to develop a methodology for the demand forecast of tractor, riding type rice transplanter and combine harvester using an ARIMA (autoregressive integrated moving average) model, one of time series analysis methods, and to forecast their demands from 2012 to 2021 in South Korea. Methods: To forecast the demands of three kinds of machines, ARIMA models were constructed by following three stages; identification, estimation and diagnose. Time series used were supply and stock of each machine and the analysis tool was SAS 9.2 for Windows XP. Results: Six final models, supply based ones and stock based ones for each machine, were constructed from 32 tentative models identified by examining the ACF (autocorrelation function) plots and the PACF (partial autocorrelation function) plots. All demand series forecasted by the final models showed increasing trends and fluctuations with two-year period. Conclusions: Some forecast results of this study are not applicable immediately due to periodic fluctuation and large variation. However, it can be advanced by incorporating treatment of outliers or combining with another forecast methods.

Performance Analysis of Electricity Demand Forecasting by Detail Level of Building Energy Models Based on the Measured Submetering Electricity Data (서브미터링 전력데이터 기반 건물에너지모델의 입력수준별 전력수요 예측 성능분석)

  • Shin, Sang-Yong;Seo, Dong-Hyun
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.627-640
    • /
    • 2018
  • Submetering electricity consumption data enables more detail input of end use components, such as lighting, plug, HVAC, and occupancy in building energy modeling. However, such an modeling efforts and results are rarely tried and published in terms of the estimation accuracy of electricity demand. In this research, actual submetering data obtained from a university building is analyzed and provided for building energy modeling practice. As alternative modeling cases, conventional modeling method (Case-1), using reference schedule per building usage, and main metering data based modeling method (Case-2) are established. Detail efforts are added to derive prototypical schedules from the metered data by introducing variability index. The simulation results revealed that Case-1 showed the largest error as we can expect. And Case-2 showed comparative error relative to Case-3 in terms of total electricity estimation. But Case-2 showed about two times larger error in CV (RMSE) in lighting energy demand due to lack of End Use consumption information.

The Research for the Change of Load Demand in Wintertime by the Influence of a Climate (기후의 영향에 따른 동절기 전력수요 변화에 대한 연구)

  • Ahn, Dae-Hoon;Song, Kwang-Heon;Choi, Eun-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2009
  • These clays, because of world economy recession, exports decreased rapidly and manufacturing industry growth fell into negative. Industrial power consumption has been reduced about 7[%] that forms 53[%] of total load demand in Korea. And also, daily load pattern has been changed in several ways because of power consumption decrease influenced by domestic demand recession and heating power load decreased by the rise in temperature. This research analyzes, by analyzing maximum load demand, average load demand, load pattern based on relative factor, and load sensitiveness in accordance with temperature, that maximum load demand is more sensitive to atmospheric temperature than GDP growth rate and average load demand tends to be reduced according to GDP growth rate. I suppose KPX could operate the network system economically and safely by forecasting load demand in winter and summer seasons based on the results.

Short-term Power Load Forecasting using Time Pattern for u-City Application (u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측)

  • Park, Seong-Seung;Shon, Ho-Sun;Lee, Dong-Gyu;Ji, Eun-Mi;Kim, Hi-Seok;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • Developing u-Public facilities for application u-City is to combine both the state-of-the art of the construction and ubiquitous computing and must be flexibly comprised of the facilities for the basic service of the building such as air conditioning, heating, lighting and electric equipments to materialize a new format of spatial planning and the public facilities inside or outside. Accordingly, in this paper we suggested the time pattern system for predicting the most basic power system loads for the basic service. To application the tim e pattern we applied SOM algorithm and k-means method and then clustered the data each weekday and each time respectively. The performance evaluation results of suggestion system showed that the forecasting system better the ARIMA model than the exponential smoothing method. It has been assumed that the plan for power supply depending on demand and system operation could be performed efficiently by means of using such power load forecasting.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF

A Study on the Conceptual Design of Integrated Management System for Public SW Project Information (공공 소프트웨어(SW) 사업정보 통합 관리체계의 개념적 설계에 관한 연구)

  • Shin, Kitae;Park, Chankwon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.199-216
    • /
    • 2019
  • The public SW market is 3 trillion won, which is less than 10% of the total SW market. However, due to the nature of the domestic market, it is an important market with a relatively large impact on small and medium-sized software companies. In this market, government is operating the Public SW Project Demand Forecasting System in order to support the marketing activities of small and medium sized SW companies and establish a fair market order. The current system has limitations such as lack of user convenience, insufficient analysis capability and less business connection. This study was conducted to identify the problems of these systems and to propose a new system for improving the convenience of users and expanding the information utilization of SMEs. To this end, we analyzed the requirements of each stakeholder. We proposed the 2-phased forecasting cycle, the management cycle, and the system life cycle of public SW projects and created a unified identifier (UID) so that the information of those projects can be identified and linked among them. As a result, an integrated reference model of project information management based on system life cycle was developed, which can explain the demand forecasting and project information, and the improved processes was also designed to implement them. Through the result of this study, it is expected that integrated management of public SW projects will be possible.

An Electric Load Forecasting Scheme with High Time Resolution Based on Artificial Neural Network (인공 신경망 기반의 고시간 해상도를 갖는 전력수요 예측기법)

  • Park, Jinwoong;Moon, Jihoon;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.11
    • /
    • pp.527-536
    • /
    • 2017
  • With the recent development of smart grid industry, the necessity for efficient EMS(Energy Management System) has been increased. In particular, in order to reduce electric load and energy cost, sophisticated electric load forecasting and efficient smart grid operation strategy are required. In this paper, for more accurate electric load forecasting, we extend the data collected at demand time into high time resolution and construct an artificial neural network-based forecasting model appropriate for the high time resolution data. Furthermore, to improve the accuracy of electric load forecasting, time series data of sequence form are transformed into continuous data of two-dimensional space to solve that problem that machine learning methods cannot reflect the periodicity of time series data. In addition, to consider external factors such as temperature and humidity in accordance with the time resolution, we estimate their value at the time resolution using linear interpolation method. Finally, we apply the PCA(Principal Component Analysis) algorithm to the feature vector composed of external factors to remove data which have little correlation with the power data. Finally, we perform the evaluation of our model through 5-fold cross-validation. The results show that forecasting based on higher time resolution improve the accuracy and the best error rate of 3.71% was achieved at the 3-min resolution.