• Title/Summary/Keyword: Demand forecast model of future market

Search Result 17, Processing Time 0.027 seconds

Prediction of Oak Mushroom Prices Using Box-Jenkins Methodology (Box-Jenkins 모형을 이용한 표고버섯 가격예측)

  • Min, Kyung-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.778-783
    • /
    • 2006
  • Price prediction is essential to decisions of investment and shipment in oak mushroom cultivation. But predicting the prices of oak mushroom is very difficult because there are so many uncertain factors affecting the demand and the supply in the market. The Box-Jenkins methodology is one of strong tools in price prediction especially for the short-term using historical observations of time series. In this paper, the Box-Jenkins methodology is applied to find a model to forecast future oak mushroom prices. And out-of-sample test was conducted to check out the prediction accuracy. The result shows the high accuracy except for market disturbance period affected by unexpected weather change and reveals the usefulness of the model.

The Impact of COVID-19 on Individual Industry Sectors: Evidence from Vietnam Stock Exchange

  • TU, Thi Hoang Lan;HOANG, Tri M.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.91-101
    • /
    • 2021
  • The paper examines the impact of the COVID-19 pandemic on the stock market prices. The vector autoregression model (VAR) has been used in this analysis to survey 341 stocks on the Ho Chi Minh City Stock Exchange (HOSE) for the period from January 23, 2020 to December 31, 2020. The empirical results obtained from the analysis of 11 economic sectors suggest that there is a statistically significant impact relationship between COVID-19 and the healthcare and utility industries. Additional findings show a statistically significant negative impact of COVID-19 on the utility share price at lag 1. Analysis of impulse response function (IRF) and forecast error variance decomposition (FEVD) show an inverse reaction of utility stock prices to the impact of COVID-19 and a gradual disappearing shock after two steps. Major findings show that there is a clear negative effect of the COVID-19 pandemic on share prices, and the daily increase in the number of confirmed cases, indicate that, in future disease outbreaks, early containment measures and positive responses are necessary conditions for governments and nations to protect stock markets from excessive depreciation. Utility stocks are among the most severely impacted shares on financial exchanges during a pandemic due to the high risk of immediate or irreversible closure of manufacturing lines and poor demand for basic amenities.

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.

An LSTM Neural Network Model for Forecasting Daily Peak Electric Load of EV Charging Stations (EV 충전소의 일별 최대전력부하 예측을 위한 LSTM 신경망 모델)

  • Lee, Haesung;Lee, Byungsung;Ahn, Hyun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.119-127
    • /
    • 2020
  • As the electric vehicle (EV) market in South Korea grows, it is required to expand charging facilities to respond to rapidly increasing EV charging demand. In order to conduct a comprehensive facility planning, it is necessary to forecast future demand for electricity and systematically analyze the impact on the load capacity of facilities based on this. In this paper, we design and develop a Long Short-Term Memory (LSTM) neural network model that predicts the daily peak electric load at each charging station using the EV charging data of KEPCO. First, we obtain refined data through data preprocessing and outlier removal. Next, our model is trained by extracting daily features per charging station and constructing a training set. Finally, our model is verified through performance analysis using a test set for each charging station type, and the limitations of our model are discussed.

A Study of the Abalone Outlook Model Using by Partial Equilibrium Model Approach Based on DEEM System (부분균형모형을 이용한 전복 수급전망모형 구축에 관한 연구)

  • Han, Suk-Ho;Jang, Hee-Soo;Heo, Su-Jin;Lee, Nam-Su
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.2
    • /
    • pp.51-69
    • /
    • 2020
  • The purpose of this study is to construct an outlook model that is consistent with the "Fisheries Outlook" monthly published by the Fisheries Outlook Center of the Korea Maritime Institute(KMI). In particular, it was designed as a partial equilibrium model limited to abalone items, but a model was constructed with a dynamic ecological equation model(DEEM) system taking into account biological breeding and shipping time. The results of this study are significant in that they can be used as basic data for model development of various items in the future. In this study, due to the limitation of monthly data, the market equilibrium price was calculated by using the recursive model construction method to be calculated directly as an inverse demand. A model was built in the form of a structural equation model that can explain economic causality rather than a conventional time series analysis model. The research results and implications are as follows. As a result of the estimation of the amount of young seashells planting, it was estimated that the coefficient of the amount of young seashells planting from the previous year was estimated to be 0.82 so that there was no significant difference in the amount of young seashells planting this year and last year. It is also meant to be nurtured for a long time after aquaculture license and limited aquaculture area(edge style) and implantation. The economic factor, the coefficient of price from last year was estimated at 0.47. In the case of breeding quantity, it was estimated that the longer the breeding period, the larger the coefficient of breeding quantity in the previous period. It was analyzed that the impact of shipments on the breeding volume increased. In the case of shipments, the coefficient of production price was estimated unelastically. As the period of rearing increased, the estimation coefficient decreased. Such result indicates that the expected price, which is an economic factor variable and that had less influence on the intention to shipments. In addition, the elasticity of the breeding quantity was estimated more unelastically as the breeding period increased. This is also correlated with the relative coefficient size of the expected price. The abalone supply and demand forecast model developed in this study is significant in that it reduces the prediction error than the existing model using the ecological equation modeling system and the economic causal model. However, there are limitations in establishing a system of simultaneous equations that can be linked to production and consumption between industries and items. This is left as a future research project.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

Developing Wastepaper Demand-Supply Model and Policy Measures to Increase Wastepaper Recycling Rate (폐지시장(廢紙市場)의 수요(需要)·공급(供給) 모델의 개발(開發)과 회수율(回收率) 제고방안(提高方案))

  • Choi, Kwan;Han, Sang-Yoel
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.133-147
    • /
    • 1994
  • Wastepaper recycling has significant implications not only in providing scarce raw material input for the paper industry but in environmental concerns such as reducing solid waste disposal, energy conservation and preservation of forest resources. The objectives of this study was (1) to develop an econometric model of demand for and supply of wastepaper, (2) to forecast wastepaper consumption and price to the year 2000 applying the econometric models estimated and (3) to estimate the elasticity of variables which are included in the wastepaper supply and demand equations. In this study wastepaper was classified into three groups, old newsprint, old corrugated and mixed For each group such as demand and supply equation were estimated. The demand equations were estimated as a function of paper and paper product consumption and wholesale price index and supply equations as a function of wastepaper price, one year lagged paper and paperproduct consumption and transportation price. Applying the econometric models to forcasting results in the future consumption and supply of wastepaper projected as 11.645 million MT and 7.396 million MT in 2000, respectively. The rate of wastepaper self-supply is forcasted about 63.5% in 2000. Especially, the rate of old neswprint self-supply is predicted about 16% which means about 2.2 million MT of old newsprint should be imported from foreign countries. Lastly, some policy measures to promote wastepaper recycling rate based upon economic and physical characteristics of wastepaper and market structure are suggested.

  • PDF