• Title/Summary/Keyword: Demand Side Bidding

Search Result 13, Processing Time 0.019 seconds

Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution Grid

  • Mets, Kevin;D'hulst, Reinhilde;Develder, Chris
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.672-681
    • /
    • 2012
  • A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.

DP Formulation of Microgrid Operation with Heat and Electricity Constraints

  • Nguyen, Minh Y;Choi, Nack-Hyun;Yoon, Yong-Tae
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.919-928
    • /
    • 2009
  • Microgrids (MGs) are typically comprised of distributed generators (DGs) including renewable energy sources (RESs), storage devices and controllable loads, which can operate in either interconnected or isolated mode from the main distribution grid. This paper introduces a novel dynamic programming (DP) approach to MG optimization which takes into consideration the coordination of energy supply in terms of heat and electricity. The DP method has been applied successfully to several cases in power system operations. In this paper, a special emphasis is placed on the uncontrollability of RESs, the constraints of DGs, and the application of demand response (DR) programs such as directed load control (DLC), interruptible/curtaillable (I/C) service, and/or demand-side bidding (DSB) in the deregulated market. Finally, in order to illustrate the optimization results, this approach is applied to a couple of examples of MGs in a certain configuration. The results also show the maximum profit that can be achieved.

Econometric Study on Forecasting Demand Response in Smart Grid (스마트그리드 수요반응 추정을 위한 계량경제학적 방법에 관한 연구)

  • Kang, Dong Joo;Park, Sunju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.133-142
    • /
    • 2012
  • Cournot model is one of representative models among many game theoretic approaches available for analyzing competitive market models. Recent years have witnessed various kinds of attempts to model competitive electricity markets using the Cournot model. Cournot model is appropriate for oligopoly market which is one characteristic of electric power industry requiring huge amount of capital investment. When we use Cournot model for the application to electricity market, it is prerequisite to assume the downward sloping demand curve in the right direction. Generators in oligopoly market could try to maximize their profit by exercising the market power like physical or economic withholding. However advanced electricity markets also have demand side bidding which makes it possible for the demand to respond to the high market price by reducing their consumption. Considering this kind of demand reaction, Generators couldn't abuse their market power. Instead, they try to find out an equilibrium point which is optimal for both sides, generators and demand. This paper suggest a quantitative analysis between market variables based on econometrics for estimating demand responses in smart grid environment.