Purpose - This study attempted to predict short-term transportation demand using trains and getting off at Gangchon Station. Through this, we present numerical data necessary for future tourist inflow policies in the Gangchon area of Chuncheon and present related implications. Design/methodology/approach - This study collected and analyzed transportation demand data from Gangchon Station using the Gyeongchun Line and ITX-Cheongchun Train from January 2014 to August 2023. Winters exponential smoothing model and ARIMA model were used to reflect the trend and seasonality of the raw data. Findings - First, transportation demand using trains to get off at Gangchon Station in Chuncheon City is expected to show a continuous increase from 2020 until the forecast period is 2024. Second, the number of passengers getting off at Gangchon Station was found to be highest in May and October. Research implications or Originality - As transportation networks are improving nationwide and people's leisure culture is changing, the number of tourists visiting the Gangchon area in Chuncheon City is continuously decreasing. Therefore, in this study, a time series model was used to predict short-term transportation demand alighting at Gangchon Station. In order to calculate more accurate forecasts, we compared models to find an appropriate model and presented forecasts.
본 연구는 지역 단위 도시가스 수요예측모형을 이용하여 전국 도시가스수요예측의 정확도를 향상할 수 있는지 여부를 살펴봤다. 지역별 수요예측모형을 구축하게 된 배경은 용도별 도시가스 수요의 행태가 분화되는 상황에서 자료의 제한으로 용도별 수요예측모형을 구축하기 어렵다는 것에 있다. 지역별 수요예측모형은 전국수요를 수도권과 지방으로 구분하여 별도의 예측모형을 구성하는 것으로, 시간변동계수를 갖는 공적분모형을 이용하였다. 지역모형에서 전국 도시가스수요예측은 지역별 수요전망치를 합산하여 산출하였다. 2013~2016년의 4년간 예측력 평가결과, 지역별 모형을 통한 전국 도시가스수요 예측이 전국단위 예측모형에 비하여 예측력이 전반적으로 우수한 것으로 나타났다. 지역모형에서는 수도권과 지방권 모형을 별도로 구축함으로써 해당 지역 수요의 특성을 반영한 예측모형이 가능했다. 수도권수요는 가정용수요 비중이 높아 기온에 보다 민감하게 반응하고, 전력수요와 경쟁관계가 있다. 이에 반해 지방권은 산업용수요 비중이 높아 전반적인 경기상황에 따른 수요변동이 크고, 수도권과 달리 벙커씨유와 LPG와 같은 산업용 연료와 대체관계를 보였다. 상기 결과는 성숙기에 접어든 도시가스산업에서 지역별 수요에 대한 세부적인 분석을 통해 전국 단위 수요예측의 정확도를 향상시킬 수 있다는 것을 보여주고, 이와 더불어 용도별 도시가수요 분석에도 유용한 정보를 제공할 것으로 기대한다.
전통적으로 통행수요예측은 개별 면접조사를 통해 수집된 자료를 기반으로 수행되었으며, 통행수요 예측의 정확성은 이러한 문제로부터 지속적으로 제기되어 왔다. 최근 정보통신 기술의 발전에 따라 통행수요예측 연구에서 새로운 자료의 활용이 다루어지고 있다. 이러한 자료는 GPS기반 위치 자료, 휴대전화 신호의 자료, CDR (Call Detail Record) 자료 등으로 포함하며, 통행 수요예측의 오류를 줄이기 위한 활용과 관련한 연구가 진행되고 있다. 이를 바탕으로 본 연구의 목적은 통행수요예측의 기초자료로 CDR의 적용 가능성을 평가하는 것이다. 이를 위해 본 연구에서는 대구광역시 평일과 주말을 포함한 2017년 4월의 4일 동안 수집한 CDR 자료를 사용하였다. 즉, CDR 통신량과 기존 면접조사의 O/D 통행량 간의 상관성을 분석하였다. 그 결과, CDR과 전통적 방식에 의한 교통수요는 서로 상관성이 존재하는 것으로 나타났으며, 통행목적별 통행량 비교결과에서는 주말 첨두시 CDR이 비가정기반 쇼핑 여가 목적 통행량과 같은 선택적 통행에서 상관성이 높은 것으로 나타났다.
A computer-aided simulation model for inventory control was developed using Apple II Plus micro-computer. The model forecasts quarterly demands with Single Exponential Smoothing method and simulates Supply Demand Review and Inventory Level Settings for each items. The simulation is based on the assumption that the demand occurrences have their own probability distributions.
We develop a dynamic demand forecasting model compared to regression analysis model and AutoRegressive Integrated Moving Average(ARIMA) model. The dynamic model can apply to the current dynamic data to forecasts through introducing state equation. A multiple regression model and ARIMA model using given data are designed via the model analysis. The forecasting fitness evaluation between the designed models and the dynamic model is compared with the criterion of sum of squared error.
Based on the results of the internet service survey, the traffic demand forecasts of the AO/DI internet service and N-ISDN service have been performed for each channel(B-channel and D-channel). These traffic forecasts can be used as useful input data for investigating packet processing capacity of the TDX-10A switching system and suggesting guideline for capacity increasement.
본 논문은 한국(韓國)의 장기목재수요함수(長期木材需要函數)를 추정(推定)하기 위한 목적으로 수행되었다. 1970년부터 1990년까지 21년간의 시계열자료(時系列資料)가 분석자료로서 이용되었으며, 수요전망은 2030년까지의 예측치를 제시하였다. 특히 본 연구는 침엽수와 활엽수를 구분하여 용도별로 수요함수를 추정하였으며, 더미변수(變數)의 확정방법(確定方法)에 관하여도 자세한 검토가 이루어졌다는 데 그 특징이 있다. 분석결과(分析結果)를 살펴보면 현재 활엽수에 대한 침엽수의 대체효과가 빠른 속도로 진행되고 있는데. 이러한 경향은 앞으로도 지속될 것인 바, 주로 건축 토목 등에 소요되는 일반 용재를 중심으로 나타날 것으로 예상된다. 수종을 불문하고 대부분의 용도가 증가할 것으로 예상되는 반면, 갱목용재의 경우는 오히려 감소할 것으로 예상된다. 수종별 용도별 목재수요함수(木材需要函數)에 대한 파라메타 추정결과(推定結果)를 보면 GDP에 대한 수요탄력성이 다른 설명변수의 탄력성보다도 상대적으로 높은 것으로 나타나고 있으며, 인구 및 대체재의 영향은 뚜렷하지 않은 것으로 나타났다.
시장의 급속한 변화와 개별 수요자 요구의 다양화로 인하여 전통적인 예측 방식은 기업의 요구사항을 충족시키기 어렵다. 다변화하는 생산 환경에서의 올바른 수요예측은 원활한 수율관리를 위한 중요한 요소이다. 현재 산업에서 보편적으로 사용되는 기존의 많은 예측 모델은 조금씩 기능에 제한이 있다. 제안된 모델은 각 모델이 개별적으로 더 잘 수행하는 부분을 고려하여 이러한 한계를 극복하도록 설계 되었다. 본 논문에서는 동적 프로세스 분석에 적합한 Grey Relational 분석을 통한 변수 추출을 하고, ARIMA 예측값을 통하여 산출되는 과거 수요 데이터의 특징을 포함하는 통계적으로 예측된 데이터를 생성한다. 이후, LSTM 모델과 결합하여 신경망모델이 가지는 특성인 유연성, 장기적인 의존성 문제를 피하도록 구성되어진 구조를 통하여 수요예측에 영향을 주는 많은 요인들을 특징을 반영하여 수요예측을 산출할 수 있다.
COVID-19의 대유행은 컨테이너를 사용하는 국가 간 수출입 물동량 불균형을 더욱 악화시켰으며, 이는 공컨테이너 수급의 문제까지 이어지게 되었다. 적정 수요만큼의 공컨테이너 확보는 안정적이고 효율적인 항만 운영을 위해 필수적인 요소이다. 지금까지 여러 기법을 사용한 공컨테이너 수요예측 방안이 연구되어 왔다. 그러나 항만 및 선사에서 직접 활용 가능한 수요예측 보다는 월 혹은 연 단위의 장기적인 예측에 머루르고 있었다. 본 연구에서는 실제 인공신경망을 이용한 일별, 주별 단위 예측 방안을 제시한다. 이를 위해 머신러닝 기법 중 다층 퍼셉트론과 회귀분석을 활용하여 수요예측을 진행하였으며, 데이터 부족 문제를 해결하기 위해 적컨테이너와 공컨테이너의 입항 후 다시 항만으로 유입되는 과정을 기반으로 데이터를 재가공하였다. 이를 통해, 정확도가 매우 높지는 않지만, 현장에서는 활용 가능한 일별 및 주별 수요 예측 모델을 개발할 수 있었다.
Recently, power supply-demand instability due to the dramatic increase in power usage suchas air-conditioning load at summertime has brought forecasts of decrease in power supply capability. Therefore improving the load factor through systematic load management, in other words, Direct Load Control became necessary. Direct Load Control(DLC) system is kind of a load management program for stabilization of electric power supply-demand. It's purpose is limiting the demand of the demand side selected at peak load or other time periods. The paper presented a Design of Direct Load Controller for control the amount of power demand in demand side. The proposed Controller is cheaper and has ability of storing more power data than pre-existing device.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.