• Title/Summary/Keyword: Delta-wing vortex

Search Result 59, Processing Time 0.029 seconds

Wake Characteristics of High Angle of Attack and Ground Effect for Low Aspect Ratio Wings using NLVLM (비선형 와류격자법을 이용한 작은 종횡비 날개의 고받음각 및 지면효과 후류 특성 분석)

  • Lee, Seawook
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.37-41
    • /
    • 2014
  • For the analysis of lifting surface at high angle of attack, a Nonlinear Vortex Lattice Method(NLVLM) was used. The NLVLM is intented to compute the interactions between lifting surfaces and separated vertical flow. The lifting surfaces are represented by a lattice of discrete vortex rings. And wakes are represented by families of non-lintersecting, semi-infinite vortex line segments. The image method also used to analyze the ground effect. It is found that vortex lines separated from lifting surfaces represent the separated flows successfully. Although the present method is applied for the rectangular wing and delta wing, extensions can be possible for the arbitrary lifting surfaces. The Present results show good agreement with experimental data.

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

Grid Dependency and Aerodynamic Analysis for Transonic Flow of Delta Wing using CFD (천음속영역의 삼각날개 격자의존성 및 공력해석)

  • Jeong, Kiyeon;Jung, Eunhee;Kang, Dong-Gi;Lee, Daeyeon;Kim, Dukhyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.445-451
    • /
    • 2018
  • This paper describes on introduction of CASE 4(Delta Wing) for EFD-CFD comparison workshop which is in charged of aerodynamic subcommittee of The Korean Society for Aeronautical and Space Science. The wind tunnel test will be performed later, angle of attack is set -5~20deg and mach number is set 0.7, 0.85, 1.2 to solve the transonic flow. The simulation test of grid dependency is conducted to determine the proper grid size of delta wing analysis. The tendency of lift and drag coefficient is determined according to the change of angle of attack based on the selected grid size.

Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing (삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과)

  • Lee, Gi Yeong;Son, Myeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • This paper presents results from steady wind tunnel test conducted on a $65^{\circ}$ delta wing at a root chord Reynolds number of $1.76{\times}10^6$. In these experiments, the wing was instrumented with 188 pressure taps, conjunction with powerful multi-channel data logging system, allowed the wing upper surface pressure distribution to be measured. Analysis indicates that the wing upper surface distribution can provide considerable insight into the comvined aerodynamic effects of angle of attack and sideslip on the wing. In a sideslip condition, the strength of the vortex on the windward side is much stronger than that of leeward side. This asymmetric pressure disstribution betwwen each side of wings result in a negative value of rolling moment. However, at a certatin range of angle of attck and sideslip angle(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$) abrupt change of sign of rolling monent, rolling monent reversal, was observed.

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

Development of 3-D Stereo PIV and Its Application to a Delta Wing

  • Kim, Beom-Seok;Lee, Hyun;Choi, Jang-Woon;Kadooka, Yoshimasa;Tago, Yoshio;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.658-663
    • /
    • 2003
  • A process of 3-D stereo particle image velocimetry(PIV)was developed for the measurement of an illuminated sliced section field of 3-D complex flows. The present method includes modeling of camera by a calibrator based on the homogeneous coordinate system, transformation of the oblique-angled image to the right-angled image, identification of 2-D velocity vectors by 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criteria, and finally 3-D display as the post processing. An experimental system was also used for the application of the proposed method. Two high speed digital CCD cameras and an Argon-Ion Laser for the illumination were adopted to clarify the time-dependent characteristics of the leading edge extension(LEX) in a highly swept shape applied to a delta wing found in modern air-fighters.

  • PDF

COMPUTATIONAL FLUID DYNAMICS OF THE LOW-SPEED LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR BWB TYPE UCAV CONFIGURATION (연속일체형 날개-동체 타입 UCAV 형상의 저속 종방향 공력특성에 대한 전산유동해석)

  • Park, S.H.;Chang, K.;Shim, H.J.;Sheen, D.J.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.48-54
    • /
    • 2016
  • In the present work, numerical simulations were conducted on the scaled model of the BWB type UCAV in the subsonic region using ANSYS FLUENT V15. The prediction method was validated through comparison with experimental results and the effect of the twisted wing was investigated. To consider the transitional flow phenomenon, ${\gamma}$ transition model based on SST model was adopted. The coefficients of lift, drag and pitching moment were compared with experimental results and the pressure distribution and streamlines were investigated. The twisted wing decreases the lift force but increases lift-to-drag ratio through delay of stall and leading edge vortex's movement to the front, also the non-linearity of the pitching moment is decreased.

Numerical Study of Flow Characteristics due to Interaction Between a Pair of Vortices in a Turbulent Boundary Layer

  • Yang, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.147-157
    • /
    • 2006
  • This paper represents a numerical study of the flow field due to the interactions between a pair of vortices produced by vortex generators in a rectangular channel flow. In order to analyze longitudinal vortices induced by the vortex generators, the pseudo-compressibility method is introduced into the Reynolds-averaged Navier-Strokes equations of a 3-dimensional unsteady, incompressible viscous flow. A two-layer $k-{\epsilon}$ turbulence model is applied to a flat plate 3-dimensional turbulence boundary to predict the flow structure and turbulence characteristics of the vortices. The computational results predict accurately the vortex characteristics related to the flow field, the Reynolds shear stresses and turbulent kinetic energy. Also, in the prediction of skin friction characteristics the computational results are reasonably close to those of the experiment obtained from other researchers.