• Title/Summary/Keyword: Delta ferrite

Search Result 116, Processing Time 0.028 seconds

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

Through Thickness Microstructure and Mechanical Properties in a Forged Thick Section Mod. 9Cr-1Mo Steel (고온 원자로용 Mod. 9Cr-1Mo강 후판재의 깊이에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Sun-Hee;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Kim, Sun-Jin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the effects of through thickness on the mechanical properties and microstructural features in Mod. 9Cr-1Mo steels for RPVs. The microstructures at all locations were typically tempered martensite, but small amount of delta ferrite was observed at the center region. The prior austenite grain size increased with the depth from the surface. The yield strengths of center and 1/4T location were higher than that of surface by 30MPa. The impact toughness of center was low compared to those of other specimens. Also, upper shelf energy was low at the center. The toughness deterioration in center might be caused by larger size of the prior austenite grains and existence of the delta ferrite.

Variation of Toughness and Porosity Formation in Weld Metal with Al Content in Self-Shielded Arc Welding Wire (셀프실드용접 와이어의 Al 첨가량에 따른 용접금속 인성 및 기공형성 변화)

  • Bang, Kook-Soo;Park, Chan;Woong, Kil;Chang, Woong-Seong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.74-79
    • /
    • 2011
  • Three different welding wires were used to study the effects of Al content on weld metal toughness and porosity formation in self-shielded arc welding. Weld metal microstructure showed that while wire with 1.3% Al content contains coarse $\delta$-ferrite, wires with less than 0.5% Al content showed no such phase. In addition to the microstructural differences, cleanliness in weld metal was also different among wires. It showed that weld metal toughness was influenced by the $\delta$-ferrite formation, cleanliness and Ni addition. Even though wires with less than 0.5% Al content showed higher weld metal toughness, they showed relatively poor workability, forming porosities in weld bead in lower arc voltages.

Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels (급속응고한 고합금 고속도 공구강의 미세조직 특성)

  • Lee, In-Woo;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

Microwave Absorption Properties in Composite Microwave Absorberby Control of Preparing Temperature (복합형 전파흡수체에 있어 시편제작 온도에 따른 전파흡수 특성)

  • 송재만;김동일;김수정;옥승민;문상현;신승재
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.97-101
    • /
    • 2003
  • Mn-Zn ferrite microwave absorbers mixed with silicon for mobile phone were prepared and the effect of preparation temperature of specimens on absorption ability was studied. A sample with the thickness of 1 mm prepared at 70 $^{\circ}C$ showed excellent absorption ability of 3.4 ㏈ at 1.8 GHz which is a frequency band for mobile phone. A loss factor of tan $\delta$ > 1 is shifted toward lower frequency as increasing preparation temperature of specimens.

  • PDF

Decomposition of CO2 with Reduced ferrite by CH4 (CH4로 환원된 페라이트를 이용한 CO2 분해)

  • 신현창;정광덕;주오심;한성환;김종원;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.7
    • /
    • pp.657-662
    • /
    • 2002
  • The reduced ferrites, reduced NiF $e_2$ $O_4$ and CuF $e_2$ $O_4$, by C $H_4$ were applied to $CO_2$ decomposition to avoid the greenhouse effects. At the reduction reaction above $700^{\circ}C$, $H_2$ and CO were generated by partial oxidation of C $H_4$ After the reduction reaction up to 80$0^{\circ}C$, the spinel structure ferrites changed to mixture of the oxygen deficient iron oxide (Fe $O_{(1-{\delta})}$(0$\leq$$\delta$$\leq$1)) and the metallic Ni or Cu. The rate and quantity of $CO_2$ decomposition with reduced CuF $e_2$ $O_4$ were larger than those with reduced NiFe $O_4$. The $CO_2$ gas was decomposed by oxidation of the oxygen deficient iron oxide. The metallic Cu and Ni were not oxidized and remained in a metallic state up to 80$0^{\circ}C$. The $CO_2$ decomposition reaction with the reduced ferrite by C $H_4$ gas is excellent process preparing useful gas such as $H_2$and CO and decomposing $CO_2$ gas.

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

Effect of Welding Speed on the Microstructure and Mechanical Properties of Austenitic Stainless Steel Welds

  • Li, C.;Jeong, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • The effect of the welding speeds on the weld bead shape, microstructure, and mechanical properties in type 304 austenitic stainless steels was investigated by microscopic test, Erichsen test and tensile test. In this study welds were produced using autogeneous Direct Current Straight Polarity (DCSP) and pulsed current GTA welding. This study shows the ferrite content, ductility, tensile strength and elongation of high speed welds are decreased with increasing welding speed. The high speed welds exhibits satisfactory tensile strength, though the ductility is not good as that of the base metal.

  • PDF

Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel (CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가)

  • Kim, C.;Park, H.B.;Jin, T.E.;Jeong, I.S.;Seok, C.S.;Park, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

Electrical Properties of Y-type Hexagonal Ferrite (Y-type hexagonal Ferrite의 전기적 특성)

  • 박영민;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.962-966
    • /
    • 1993
  • Effect of Fe content on the electrical properties of Zn2Y (Ba2Zn2Fe12O22) was studied by investigating X-ray diffraction patterns, microstructure and resistivity of samples. When x(Ba2Zn2Fe12+xO$\delta$) is between +1 and -1, Zn2Y single phase was obtained and electrical resistivity was inversely proportional to Fe content. The possible defect model of Zn2Y was proposed based on the observation. When x<-1 or x>1, second phase(ZnFe2O4 for x<-1, ZnFe2O4 and Ba3Zn3Fe24O41 for x>1) were observed and the electrical resistivity was inversely proportional to the sample density. The activation energy of electrical conductivity of the stoichiometric Zn2Y was 0.49eV below 20$0^{\circ}C$ and 0.07eV above 50$0^{\circ}C$.

  • PDF