• Title/Summary/Keyword: Delta encoding

Search Result 64, Processing Time 0.025 seconds

Fast Coding Unit Decision Algorithm Based on Region of Interest by Motion Vector in HEVC (움직임 벡터에 의한 관심영역 기반의 HEVC 고속 부호화 유닛 결정 방법)

  • Hwang, In Seo;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.41-47
    • /
    • 2016
  • High efficiency video coding (HEVC) employs a coding tree unit (CTU) to improve the coding efficiency. A CTU consists of coding units (CU), prediction units (PU), and transform units (TU). All possible block partitions should be performed on each depth level to obtain the best combination of CUs, PUs, and TUs. To reduce the complexity of block partitioning process, this paper proposes the PU mode skip algorithm with region of interest (RoI) selection using motion vector. In addition, this paper presents the CU depth level skip algorithm using the co-located block information in the previously encoded frames. First, the RoI selection algorithm distinguishes between dynamic CTUs and static CTUs and then, asymmetric motion partitioning (AMP) blocks are skipped in the static CTUs. Second, the depth level skip algorithm predicts the most probable target depth level from average depth in one CTU. The experimental results show that the proposed fast CU decision algorithm can reduce the total encoding time up to 44.8% compared to the HEVC test model (HM) 14.0 reference software encoder. Moreover, the proposed algorithm shows only 2.5% Bjontegaard delta bit rate (BDBR) loss.

Monitoring of Chicken RNA Integrity as a Function of Prolonged Postmortem Duration

  • Malila, Yuwares;Srimarut, Yanee;U-chupaj, Juthawut;Strasburg, Gale;Visessanguan, Wonnop
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1649-1656
    • /
    • 2015
  • Gene expression profiling has offered new insights into postmortem molecular changes associated with meat quality. To acquire reliable transcript quantification, high quality RNA is required. The objective of this study was to analyze integrity of RNA isolated from chicken skeletal muscle (pectoralis major) and its capability of serving as the template in quantitative real-time polymerase chain reaction (qPCR) as a function of postmortem intervals representing the end-points of evisceration, carcass chilling and aging stages in chicken abattoirs. Chicken breast muscle was dissected from the carcasses (n = 6) immediately after evisceration, and one-third of each sample was instantly snap-frozen and labeled as 20 min postmortem. The remaining muscle was stored on ice until the next rounds of sample collection (1.5 h and 6 h postmortem). The delayed postmortem duration did not significantly affect $A_{260}/A_{280}$ and $A_{260}/A_{230}$ ($p{\geq}0.05$), suggesting no altered purity of total RNA. Apart from a slight decrease in the 28s:18s ribosomal RNA ratio in 1.5 h samples (p<0.05), the value was not statistically different between 20 min and 6 h samples ($p{\geq}0.05$), indicating intact total RNA up to 6 h. Abundance of reference genes encoding beta-actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), hypoxanthine-guanine phosphoribosyltransferase (HPRT), peptidylprolylisomerase A (PPIA) and TATA box-binding protein (TBP) as well as meat-quality associated genes (insulin-like growth factor 1 (IGF1), pyruvate dehydrogenase kinase isozyme 4 (PDK4), and peroxisome proliferator-activated receptor delta (PPARD) were investigated using qPCR. Transcript abundances of ACTB, GAPDH, HPRT, and PPIA were significantly different among all postmortem time points (p<0.05). Transcript levels of PDK4 and PPARD were significantly reduced in the 6 h samples (p<0.05). The findings suggest an adverse effect of a prolonged postmortem duration on reliability of transcript quantification in chicken skeletal muscle. For the best RNA quality, chicken skeletal muscle should be immediately collected after evisceration or within 20 min postmortem, and rapidly preserved by deep freezing.

Group-based Adaptive Rendering for 6DoF Immersive Video Streaming (6DoF 몰입형 비디오 스트리밍을 위한 그룹 분할 기반 적응적 렌더링 기법)

  • Lee, Soonbin;Jeong, Jong-Beom;Ryu, Eun-Seok
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.216-227
    • /
    • 2022
  • The MPEG-I (Immersive) group is working on a standardization project for immersive video that provides 6 degrees of freedom (6DoF). The MPEG Immersion Video (MIV) standard technology is intended to provide limited 6DoF based on depth map-based image rendering (DIBR) technique. Many efficient coding methods have been suggested for MIV, but efficient transmission strategies have received little attention in MPEG-I. This paper proposes group-based adaptive rendering method for immersive video streaming. Each group can be transmitted independently using group-based encoding, enabling adaptive transmission depending on the user's viewport. In the rendering process, the proposed method derives weights of group for view synthesis and allocate high quality bitstream according to a given viewport. The proposed method is implemented through the Test Model for Immersive Video (TMIV) test model. The proposed method demonstrates 17.0% Bjontegaard-delta rate (BD-rate) savings on the peak signalto-noise ratio (PSNR) and 14.6% on the Immersive Video PSNR(IV-PSNR) in terms of various end-to-end evaluation metrics in the experiment.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF