• 제목/요약/키워드: Delta Wing Vortex Generator

검색결과 12건 처리시간 0.028초

Delta Wing Vortex Generator가 부착된 Plate Fin-Oval Tube 열교환기에서 휜 주위의 유동에 대한 수치적 해석 (The Numerical Analysis of the Flow Fields near Fin Surface of a Plate Fin-Oval Tube Heat Exchanger with Delta Wing Vortex Generators)

  • 신석원;정인기;김수연;이영우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2023-2028
    • /
    • 2008
  • In present study, the flow field near the fin surface of plate fin - oval tube heat exchanger with delta wing vortex generator was numerically analyzed. As results, the well developed vortex behind delta wing was observed. These vortex can improve heat transfer fin surface behind delta wing vortex generators.

  • PDF

와동 플랩 삼각날개를 이용한 관내 와류 발생장치 설계 및 수치해석 (Design and Numerical Analysis of Swirl Generator in Internal Duct using Delta Wing with Vortex Flap)

  • 김명호
    • 한국항공우주학회지
    • /
    • 제35권9호
    • /
    • pp.761-770
    • /
    • 2007
  • 본 연구에서는 압력 왜곡과 유동각 왜곡을 모사하기 위하여 삼각날개를 이용한 와류 발생장치를 설계하였다. 삼각날개는 목표한 와류코어 위치와 압력왜곡율(DC90), 와류각을 만족하기 위해 후퇴각 $65^{\circ}$를 사용하였으며, 와류의 분포 영역을 넓히기 위해 삼각날개 전단면에 $45^{\circ}$ 와동 플랩을 적용하였다. 제작된 와류 발생장치는 시뮬레이션 덕트를 적용한 유동 왜곡 시험에서 전압력 왜곡율의 설계 요구조건을 만족하였으며, 시험 결과로부터 검증된 전산유체해석 결과를 이용하여 와류코어 위치와 와류각의 목표 성능을 확인하였다.

와류발생기를 사용한 전자칩의 냉각촉진에 관한 연구 (A study on the cooling enhancement of electronic chips using vortex generator)

  • 유성연;주병수;이상윤;박종학
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.973-982
    • /
    • 1997
  • Effect of vortex generator on the heat transfer enhancement of electronic chips is investigated using naphthalene sublimation technique. Experiments are performed for a single chip and chip arrays, and shape of vortex generator, position of vortex generator, stream wise chip spacing and air velocity are varied. Local and average heat transfer coefficients are measured on the top surface of simulated electronic chips, and compared with those obtained without vortex generator. In case of a single chip, heat transfer augmentation is seen only on the upstream portion of chip surface, while heat transfer enhancement is found on the whole surface for chip arrays. Rectangular wing type vortex generator is found to be more effective than delta wing.

와동 발생기를 이용한 자외선 살균 시스템 성능 향상에 관한 연구 (A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator)

  • 김봉환;안국찬;김동진
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.24-29
    • /
    • 2007
  • The effectiveness of a UV(ultra violet) disinfection system depends on the characteristics of the waste water, flow conditions, the intensity of UV radiation, the amount of time the microorganisms are exposed to the radiation, and the reactor configuration. The wast water flow conditions are important factors in the design of UV disinfection system from the point of enhancement view of UV disinfection. The turbulent energy intensity in the wake by the vortex shedding are effective for UV radiation. Therewith the effectiveness of vortex generator is considered as a enhancement of UV disinfection. The experimental results presented give important evidences and explain that it is possible to predict UV disinfection performance based on flow experiments. An experimental investigation of two types of the vortex generator is presented. The qualitative and quantitative evaluations of the wake are made by flow visualization using smoke wire method and the measurement of vortex frequencies in the wind tunnel. From the experiment, following results were obtained that the delta wing type vortex generator is more effective than circular type because of the higher vortex frequencies and the smaller drag.

원주 후미에 부착된 와동발생기의 영각 변화에 따른 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics due to the Variations of the Angle of Attack at the Vortex Generators located behind a Circular Cylinder)

  • 하홍영;홍철현;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.439-449
    • /
    • 2002
  • Experimental investigations of the flow structure and heat transfer enhancement in a channel with a built-in circular cylinder and a wing-let type vortex generator are presented. Without any vortex generators, relatively low heat transfer takes place in the downstream of the circular cylinder where is a recirculation region with low velocity fluid is formed. However with a wing-let type longitudinal vortex generator in the wake region behind the cylinder, heat transfer in the region can be enhanced. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from $20^{circ} to 45^{\circ}$, but spacings between the vortex generations are fixed to be 5 mm. The 3-dimensional mean velocity field downstream of the vortex generator is measured by a five-hole pressure probe, and the hue-capturing method using thermochromatic liquid crystals has been used to provide the local distribution of the heat transfer coefficient. The vorticity field and streamwise velocity contour are obtained from the velocity field. Streamwise distributions of averaged Stanton number on the measurement planes show very similar trends for all the experimental cases($\beta=20^{circ}, 30^{circ} and 45^{\circ}$). Circulation strength and heat transfer coefficient have the maximum values when the angle of attack($\beta$) is $30^{\circ}$.

Plate fin-oval tube 열교환기에서 와류발생체에 의한 fin 표면에서의 국소 열전달 특성 (Local Heat Transfer Characteristics on Fin Surface of Plate Fin - Oval Tube with Delta Wing Vortex Generators)

  • 신석원;정인기;김수연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2007
  • The present research was experimentally performed to analyze the effect of delta-wing vortex generators(DWVG) on the heat transfer of fin surface of the plate fin-oval tube. The local heat transfer coefficient of the fin surface for four kinds of DWVG's arrangement was measured by the naphthalene sublimation technique for Reynolds numbers ranging from 2000 to 3200. The results showed that the heat transfer of the plate fin-oval tube can be significantly enhanced by DWVG for relatively low Reynolds numbers.

  • PDF

사각채널내 와동발생기가 부착된 원형실린더 하류 유동 특성에 대한 실험적 연구 (Experimental Investigations of Flow Characteristics by Wing Type Vortex Generators Set up Behind a Circular Cylinder in a Rectangular Channel)

  • 이상민;하홍영;양장식;이기백
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1076-1085
    • /
    • 2001
  • Experimental investigations of the longitudinal vortices, which are produced by wing type vortex generators set up behind a circular cylinder in a rectangular channel, are presented. When the circular cylinder is set up in the rectangular channel, a horseshoe vortex is formed just upsteam of the circular cylinder. It generates a turbulent wake region behind the circular cylinder. Therefore, the region of the pressure loss behind the circular cylinder in increased and the size of the wake is small. These problems can be achieved by longitudinal vortices which are generated by wing-type vortex generator. In order to control the strength of longitudinal vortices, the angle of attack of the vortex generators is varied from 20 degree to 45, but the spacing between the vortex generators is fixed 6cm. The 3-dimensional mean velocity measurements are made using a five-hole probe. The vorticity field and streamwise velocity contour are obtained from the velocity field. The following results are obtained. Circulation strength is the maximum value when the angle of attack($\beta$) is $30^{\circ}$, and the vorticity field and streamwise velocity contour in case of $\beta$=$20^{\circ}$ show the trend similar to these in case of $\beta$=$30^{\circ}$, but do not in case of $\beta$=$45^{\circ}$.

  • PDF

배연탈질설비의 성능향상을 휘한 가스혼합에 관한 연구 (A Study on the Flue Gas Mixing for the Performance Improvement of De-NOx plant)

  • 류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.462-472
    • /
    • 1999
  • De-NOx facility using Selective Catalytic Reduction method is the most widely applied one that removes NOx from flue gas emitted from combustion facility such as boiler for power generation engine incinerator etc. Reductant $NH_3\;or\;NH_4OH$ is sprayed into flue gas to convert NOx into $H_2O$ and $N_2.$ Good mixing between flue gas and $NH_3$ is the most important factor to increase reduction in catalytic layer and to reduce unreacted NH3 slip. Therefore the development of mixer device for mixing effect is one of the important part for SCR facility. Objectives of this study are to investigate the relation between flow and concentration field by observation at the wake of delta-wing type mixer. At the first stage qualitative measurement of flow field is conducted by flow visualization using laser light sheet in lab. scale wind tunnel. Also we have conducted the quantitative analysis by comparing flow field measurement using LDV with numerical simulation. On the basis of qualitative and quantitative analysis we investigate the dis-tribution of flow and concentration in flow model facility. The results of an experimental and compu-tational examination of the vortex structures shed from delta wing type vortex generator having $40^{\circ}$ angle of attack are presented, The effects of vortex structure on the gas mixing is discussed, too.

  • PDF

Plate Fin-Oval Tube 열교환기에서 익형 와류발생체에 의한 Fin 표면에서의 국소 열전달에 대한 특성 (Local Heat Transfer Characteristics on Fin Surface of Plate Fin-Oval Tube with Delta Wing Vortex Generators)

  • 신석원;정인기;김수연
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.757-766
    • /
    • 2009
  • In the present study, the effect of delta-wing vortex generators(DWVG) on the local heat transfer of the plate fin-oval tube was experimentally analyzed for Reynolds numbers for 2000, 2500 and 3200. The local heat transfer coefficient of the fin surface for four type DWVGs was measured by the naphthalene sublimation technique. As the results, the distribution of the heat transfer coefficient at rear of DWVGs showed longitudinal contours for common flow down DWVGs and wavy contours for common flow up DWVGs. The distribution showed many cell type contours at near wall and downstream for all DWVGs. Compared to case without DWVGs in present experimental tests, all DWVGs showed the best enhancement of heat transfer at Re=2000. Of 4 cases of DWVGs, D type showed the best enhancement of heat transfer.

와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구 (The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator)

  • 권수인;양장식;이기백
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.