• Title/Summary/Keyword: Delivery water loss

Search Result 41, Processing Time 0.027 seconds

Estimation of Water Loss in Irrigation Canals through Field Measurement (현장 측정을 통한 관개용수로의 손실량 추정)

  • Lee, Yong-Jig;Kim, Phil-Shik;Kim, Sun-Joo;Keun, Jee-Yong;Joo, Uk-Jong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • Water losses in irrigation canals are mainly estimated as the sum of conveyance and delivery water loss. The losses occur via the evaporation, infiltration, gate operation and water distribution processing. Recently, the study regarding these water losses are not satisfactory enough, also delivery water loss has not been mainly considered on field design. The objective of this study is to investigate and analyze the volume of water loss in irrigation canals considering condition of actual farm land. A field measurement was performed at four research sites, which are managed by Korea Rural Community & Agriculture Corporation, to evaluate conveyance and delivery water loss for 2 years. The measurement was performed by canal type, size and designed flow using the inflow-outflow method at a major points such as start and end of each canal, derivation point of canal and inlet of paddy fields. Results of this study showed that water loss ratio in lateral canals was bigger than that of main canal unlike current design standard and the loss decrease as flow increase. The total of water loss ratio including conveyance and delivery water loss in several irrigation canals ranged between 33.25 and 45.0%.

SOIL EROSION MODELING USING RUSLE AND GIS ON THE IMHA WATERSHED

  • Kim, Hyeon-Sik;Julien Pierre Y.
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.29-41
    • /
    • 2006
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. Sediment inflow from upland area has also deteriorated the water quality and caused negative effects on the aquatic ecosystem of the Imha reservoir. The Imha reservoir was affected by sediment-laden density currents during the typhoon 'Maemi' in 2003. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon 'Maemi'. The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon 'Maemi' were predicted as 3,450 tons/km2/year and 2,920 ton/km2/'Maemi', respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997. The trap efficiency of the Imha reservoir was calculated using the methods of Julien, Brown, Brune, and Churchill and ranges from 96% to 99%.

  • PDF

Soil Erosion Modeling Using RUSLE and GIS on the Imha Watershed (RUSLE 모형을 이용한 임하댐 유역에서의 토양유실량 평가)

  • Kim, Hyeon-Sik;Julien, Pierre. Y.;Yum, Kyung-Taek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.126-131
    • /
    • 2007
  • The Imha watershed is vulnerable to severe erosion due to the topographical characteristics such as mountainous steep slopes. The RUSLE model was combined with GIS techniques to analyze the mean annual erosion losses and the soil losses caused by typhoon "Maemi". The model is used to evaluate the spatial distribution of soil loss rates under different land uses. The mean annual soil loss rate and soil losses caused by typhoon "Maemi"were predicted as $3,450\;tons/km^2/year$ and $2,920\;ton/km^2/"Maemi"$, respectively. The sediment delivery ratio was determined to be about 25% from the mean annual soil loss rate and the surveyed sediment deposits in the Imha reservoir in 1997.

  • PDF

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Influences of Construction Conditions on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용하는 바닥 모르타르의 특성에 미치는 시공요인의 영향)

  • 표대수;정성철;송명신;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.925-928
    • /
    • 2000
  • In this paper, physical properties of cement mortar for floor using expansion agent are discussed varied with mixing time and curing temperature, delivery time and content of added water for preventing fluidity loss. According to experimental results, slump loss shows high with elapse of time And as curing temperature goes up, it also show high when curing temperature goes up and time lag between mixing and casting increases. As curing temperature goes down, drying shrinkage shows to be decreased. But it shows decline tendency with increase of added water content.

A Study on the Estimation of Sediment Yield Based on a Distributed System Concept (분포형 개념을 이용한 토사유출량 산정에 관한 연구)

  • Kim, Ung-Tae;Yun, Yong-Nam;Park, Mu-Jong;Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.131-140
    • /
    • 2001
  • The present study is focused on improving the methodology for the determination of parameters involved in USLE(Universal Soil Loss Equation) based on distributed system concept and investigation of sediment delivery ratio. Generally the distributed system concept consists of grid networks throughout the watershed and sediment can be traced from grid to rid in the direction of the steepest descent. The sediment yield data together with physical data of 10 small irrigation reservoirs in Kyounggi-Do are collected. After the sediment delivery ratio of a grid is defined to be related tothe fraction of forested or covered with delivery proofing area of the grid, the preportionality coefficient(C$_1$) is introduced. The distributed system model is calibrated using the available data for 8 reservoirs and is verified with the data for the ramaining 2 reservoirs, and regression analysis is made to express the proportionality coefficient $C_1$ in terms of watershed physical characteristics. By applying this results the verification of the distributed system model for 2 reservoirs showed a fair result, which justifies the applicability of the proposed method in the present study.

  • PDF

Influence of Flowing Velocity and Length of Delivery Hoses on Power Requirement of Agricultural pump. (각종 송출 호오스의 구경 및 길이가 농용양수로의 소요동력에 미치는 영향)

  • 김기대;김성래;이한만
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.46-52
    • /
    • 1979
  • The water delivery hose for agricultural pump is getting popular in rural areas in korea. Friction head loss, discharge, and power requirements were measured in various discharge for different material and diameter of hose to get basic data for economical use in agricultural pump. The results attained in this study were as follows ; 1. Friction head loss increased significantly as the velocity increased, and the difference of velocity between the different diameter of hose was bigger than that between materials, which was resulted in the increase of the friction head loss. 2. Friction head loss in the case of that the velocity with 2m/sec was constant was about 3.53 to 4.01 m/100m in the diameter 3" and about 2.30 to 3.10 m/100m in the diameter 4". Material A of diameter 3" showed the maximum value 8.4m/100m in Reynolds number $2.0\times10^5$, 4" got the minimum value 2.24m/100m, the difference between these values was bigger than 6m per 100 meters in the friction head loss. 3. Darcy-Weisbach formular with friction coefficient [f] calculated by Nikurades formular in the smooth pipe or with friction coefficient [f] calculated on the base of C value 125 in Hazen-Williams formular was available in friction head loss of the water discharger hose in rural areas. 4. Total head increased as friction head loss increased , meanwhile total discharge decreased, and 20 percents of energy was more saved in Material C 4″pipe than Material A 3″pipe in the view point from the discharge per unit power requirement, this phenomenon suggested that long distance pipe would be advantage in larger diameter pipe for save of energy. for save of energy.

  • PDF

A Study on the Seepage Loss from Earth Canal (흙 수로에서 삼투손실에 관한 연구)

  • 박상현;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 1981
  • This study was carried out to investigate the relation between seepage losses and flow section area in earth canals. Totally 77 seepage measurement was gained by ponded method and the tested canals belong to the irrigation area of Farmland Improvement Association in each province, Korea. The results obtained from this study may be used as a reasonable criteria for the estimation of canal seepage losses in the design of irrigation systems. Obtained results are summarized as follows: 1. Average seepage rates in each Soils is 14cm/day in ML, 6. 3cm/day in CL and 24.9 cm/day in SM. 2. Water depth and water surface width in eath canals have little influenced on the seepage rate, while the seepage losses was increased in proportion as the water surface width lengthens. 3. A formula of S=C.An defining a relationship between seepage losses and flow section was derieved as follows. ML:S=O. 35 VA 1.20 (m$^3$/day/m) CL:S=O. 13 VA 0.84 SM:s=O.67VA-1.56 4. The average seepage loss rates per 1km of canal are as followings. Measured Time ML CL SM 0-4 hrs 2.2% 0.6% 4.5% 4-2 4hrs 1.0% 0.15% 2.0% In above table we may obtain the following results. The first row is suitable for the canal having short delivery time of irrigation, while the second row for the canal having long delivery time.

  • PDF

Evaluation of Phosphorus and Nitrogen Delivery Characteristics of Chogang Stream Sediments (초강천의 퇴적물 분석을 이용한 총인 및 질소의 유달 특성 평가)

  • Kang, Seon-Hong;Seo, Dong-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.99-109
    • /
    • 1997
  • To estimate the nutrients delivery characteristics of Chogang stream to Keum River, sediment and soil characteristics were analyzed in the stream and in the stream bank. Along the stream, soil samples from river sediment were collected and tested monthly for phosphorus and nitrogen concentrations. Nitrogen concentration in the sediment is much lower than that of soil in the river bank especially in summer presumably due to the high desorption characteristics of nitrogen by the increasing rainfall energy during summer. Instead, the concentrations of phosphorus were similar for the sediment and the soil in the river bank due to the strong adsorption characteristics of phosphorus. Batch tests were performed to evaluate the desorption potential of the sediments. Universal Soil Loss Equation (USLE) was applied to quantify soil erosion in each watershed due to rainfall. It was estimated that approximately 25% of total phosphorus by mass basis could be released from the sediment if the water was disturbed vigorously. The mass load of nitrogen and phosphorus into the Chogang Stream from the watershed were evaluated from the USLE and release ratio of phosphorus.

  • PDF

Enhanced Sediment Assessment Tool for Effective Erosion Control (효과적인 토양유실 방지대책 수립을 위한 유사평가툴)

  • Lim, Kyoung-Jae;Engel, Bernard A.;Choi, Ye-Hwan;Choi, Joong-Dae;Kim, Ki-Sung;Shin, Yong-Cheol;Heo, Sung-Gu;Lyou, Chang Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.632-636
    • /
    • 2005
  • Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. To effectively estimate soil erosion and to establish soil erosion management plans, many computer models have been developed and used. The Revised Universal Soil Loss Equation (RUSLE) has been used in many countries, and input parameter data for RUSLE have been well established over the years. However, the RUSLE cannot be used to estimate the sediment yield for a watershed. Thus, the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to estimate soil loss and sediment yield for any location within a watershed using the RUSLE and a spatially distributed sediment delivery ratio. SATEEC was enhanced in this study by developing new modules to:1) simulate the effects of sediment retention basins on the receiving water bodies, 2) prepare input parameters for the Web-based sediment decision support system using a GIS interface. This easy-to-operate SATEEC system can be used to identify areas vulnerable to soil loss and to develop efficient soil erosion management plans.

  • PDF