• Title/Summary/Keyword: Delignification

Search Result 93, Processing Time 0.018 seconds

Preparation of Pure Cellulose Substrate from Low-Grade Woods by Autohydrolysis (저급목재의 자기가수분해 전처리에 의한 고순도 셀룰로오스 기질의 제조)

  • Cho, Nam-Seok;Kim, Byoung-Ro;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2002
  • This study was performed to produce the high reactive lignin zero substrates from autohydrolyzed wood resources. In chemical compositions of used raw-materials, there were significant differences between two species, Japanese larch (Larix leptolepis) and oak (Quercus mongolica) woods. Japanese larch contained 25 to 3.5 times higher amounts of extractives than oak wood, which is mainly derived from high content of arabinogalactan in Japanese larch wood. Oak wood has 5% lower lignin content and 3% higher holocellulose and pentosans than larch wood. Concerned to changes in wood components during autohydrolysis pretreatment at 22 kg/cm2 steaming pressure for 5~60 min, glucose content was constant during pretreatment, while hemicellulose and lignin were abruptly changed. Hemicellulose fraction was decreased significantly and lignin contents increased because of its condensation reaction with hemicellulose degradation products. The pH of hydrolyzates during pretreatment was decreased, reached upto pH 3 and since then leveled off. In the case of oak wood, same tendency was observed as in Japanese larch. Autohydrolysis followed by sodium chlorite and sulfite or bisulfite pretreatment was very effective in delignification of the substrates. In particular, two-stage delignification of autohydrolyzed woods with alkali and O2-alkali resulted in very low lignin content substrates, such as 0~0.2% lignin substrate.

Preparation of Concrete Admixtures from Pine Bark Wasts(I) - Optimal Sulfonation of Bark Components - (폐 소나무 수피로부터 콘크리트 혼화제의 제조(I) - 수피성분의 최적 설폰화조건 -)

  • 문성필;박성천;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.743-746
    • /
    • 1998
  • Pine bark waste was delignified with various sulfite liquors in order to use its spent liquor as concrete additives. The bark was easily deliginfied in alkaline sulfite-anthraquinone(ASAQ) cooking, resulting in more than 90% delignification. The dispersing ability of the ASAQ spent liquor was almost equivalent to or better than that of the commercial wood lignosufonate(CSL), Sanflo R.

  • PDF

Comparison of Ozone Treatment Effects in Hardwood and Softwood CTMPs (침.활엽수재 CTMP의 오존처리 효과비교)

  • 윤승락
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.77-82
    • /
    • 1999
  • The delignification, and optical and strength properties were determined to compare the ozone treatment effect in hardwood and softwood CTMPs. During ozone treatment, the delignificantion was much higher in hardwood pulp than in softwood pulp . The optical and strength properties which were very dependent upon the lignin content in pulp were significantly improved in the case of hardwood pulp . The ozone treatment of high yield pulp was more effective in hardwood pulp than that of softwood pulp.

  • PDF

Mediator-Assisted Biobleaching of Kraft Pulp by Laccase from Botrytis cinerea

  • Kim, Myungkil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.52-58
    • /
    • 2004
  • The use of N-hydroxyphthalimide (NHPI) as a mediator for laccase has proven to be comparable to N-hydroxybenzotriazole (HBT) for the delignification of kraft pulp, and the transformation of a number of industrial dyes. The advantages of NHPI derivatives are the biodegradation of these compounds compared to HBT, which has been shown to be recalcitrant in the environment, and the more reasonable cost of synthetic process.

Preparation of Cellulose Nanofibers from Domestic Plantation Resources (국내 자생 식물자원을 이용한 셀룰로오스 나노섬유의 제조 기술 개발)

  • Jang, Jae-Hyuk;Kwon, Gu-Joong;Kim, Jong-Ho;Kwon, Sung-Min;Yoon, Seung-Lak;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.156-163
    • /
    • 2012
  • This research has been carried out to investigate the characteristics of cellulose nanofibers manufactured from domestic lignocellulosic materials by mechanical grinding method. The continuous grinding process was effective for loosening cell wall structure, with increasing grinding time, much smaller nanofibers were observed. Filtration time was linearly increased with increasing grinding time for all experimental materials. Relative crystallinity of cellulose was not changed by grinding process, but increased by delignification treatment. Tensile property of fiber sheets was drastically improved with increasing grinding time. Fibers sheets obtained from delignified cone stalks showed an excellent tensile strength. Consequently, it is considered that this study presented some effective information for manufacturing cellulose nanofibers with domestic plantation resources.

첨가제가 이산화염소 표백에 미치는 영향

  • 윤병호;왕립군;김세종;김용식;최경화
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04a
    • /
    • pp.84-88
    • /
    • 1999
  • In chlorine dioxide delignigication or bleaching, chlorate is mainly formed by the reaction between chlorite and hypochlorous acid, thus scavengers of chlorine or hypochlorous acid can be used to reduce the formation of chlorate which is unfavorable to environment. In this study, additives such as sulfamic acid, DMSO, hydrogen peroxide, or sodium chlorite was added to chlorine solution or pure $ClO_2$ solution to check their reactivity with $Cl_2$ and $ClO_2$. These additives were also added directly into general $ClO_2$ solution which contained certain amount of chlorine, then the additive-treated $ClO_2$ solution were used in bleaching stages. The aim of this procedure was to remove the original amount of chlorine that was thought to be possibly the main reason for the formation of chlorate and AOX. The additives were found to be able to eliminate chlorine very fast and selectively, but $H_2$ $O_2$ should be used under pH4, otherwise it also reacts with $ClO_2$. After the additives reacted With $Cl_2$, DMSO turned into an inactive product $(CH_3)_2SO_2$, While Sulfamic acid turned into $HClSO_3H$ that still remained active in oxidation, and $NaClO_2$ produced $ClO_2$. The addition of $HNaClO_2$ showed significant improvement in delignification but the deeper delignification led to higher formation of chlorate. When the additive-treated chlorine dioxide solutions were used in bleaching, both sulfamic acid, DMSO, and hydrogen peroxide showed no significant changes of DE brightness and Kappa number. The formation of chlorate was reduced by addition of sulfamic acid, DMSO and hydrogen peroxide.

  • PDF

Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process (Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 1999
  • The effect of hydrogen peroxide on pretreatment of oakwood was investigated. Reaction temperature was $170^{\circ}C$ and reaction solutions used in pretreatment were aqueous ammonia, sulfuric acid and pure water. When 10% ammonia solution was used, the extents of delignification and hemicellulose recovery were 55% and 26%, respectively. These values were significantly higher as delinigfication and lower as hemicellulose recovery than those of acid hydrolysis. To overcome this problem, hydrogen peroxide was added into ammonia solution stream to increase hemicellulose recovery. But delignification and hemicellulose recovery were not increased as much as hydrogen peroxide loading was increased. And as hydrogen peroxide loading was increased, the decomposition of sugars solubilized from hemicellulose and cellulose were increased. So there were significant differences between the total amount in solid residue and liquid hydrolyzate, and the total amount in the original biomass. It was found that hydrogen peroxide added was reacted with substrate packed mostly in the front part of reactor. In order to increase hemicellulose recovery, it was necessary to treat with acidic solution than with alkali solution. Effect of hydrogen peroxide was higher in water than acid solution.

  • PDF

Microbial Conversion of Woody Waste into Sugars and Feedstuff (I) - Optimal Delignification condition with alkaline peroxide for enzymatic hydrolysis of poplar wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (I) - alkaline peroxide에 의한 현사시나무의 효소가수분해를 위한 탈리그닌화의 적정조건)

  • Kim, Yoon-Soo;Bang, Joo-Wan;Chung, Ki-Chul;Myung, Kyu-Ho;Kim, Youn-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.23-29
    • /
    • 1986
  • Alakline peroxide pretreatment for the delignification of poplar wood was performed. sinceit is a simple and efficent method for enhancing the enzymatic digestibility of wood residues. Approximately one-half of their lignin and most of the hemicellulose present in poplar wood were removed when the wood sawdust was reacted at 25$^{\circ}C$ for 100 hrs in an alkaline solution (pH 11.5) of 1% peroxide. The rate of decomposition as well as the saccharification efficiency were enhanced up to 350% and 260% respectively in comparision with those of the controll. This enhancement is comparable with that pretreated with 1% sodium hydroxide and 20% peracetic acid successively. The advantages of alkaline peroxide as delignifying agents against other chemicals were also discussed.

  • PDF

The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (I) -Low Pressure Steaming Explosion and Separation of Wood Main Components- (저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用)(I) -저압폭쇄처리(低壓爆碎處理) 및 목재주성분(木材主成分)의 분리(分離)-)

  • Eom, Chan-Ho;Eom, Tae-Jin;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.30-36
    • /
    • 1993
  • Wood chips of oak (Quercus mongolica) and larch (Larix leptolepis) were treated with a relatively low pressure steam(10~20 kg/$cm^2$) for 10~20 min (first-stage),and then increased pressure up to 30kg/$cm^2$ for 30 second (second-stage), and steam pressure was released intentionally to air. Main components of exploded wood were separated with 1% NaOH and hot water-methanol. In this work, the more effective low pressure explosion condition and separation method of wood main component were investigated. The results can be summarized as follows; 1. The yields of exploded wood were generally decreased with increasing steam pressure and reaction time. 2. The proper condition of steam explosion in low pressure for the separation of wood main components was 15kg/$cm^2$-10 min, in oak wood and 20kg/$cm^2$-10 min., then 30kg/$cm^2$-0.5 min, in larch wood. 3. The 23% of elude hemicellulose was obtained from the exploded oak wood which was treated with optimal condition. 4. In the case of hot water-methanol extraction, the ratio of delignification was 14~23% in the exploded larch wood and 42~55% in the exploded oak wood. 5. The methanol was more effective than 1% sodium hydroxide solution for extraction of lignin from exploded wood.

  • PDF