• Title/Summary/Keyword: Deletion

Search Result 1,562, Processing Time 0.05 seconds

Analysis of unmapped regions associated with long deletions in Korean whole genome sequences based on short read data

  • Lee, Yuna;Park, Kiejung;Koh, Insong
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.40.1-40.9
    • /
    • 2019
  • While studies aimed at detecting and analyzing indels or single nucleotide polymorphisms within human genomic sequences have been actively conducted, studies on detecting long insertions/deletions are not easy to orchestrate. For the last 10 years, the availability of long read data of human genomes from PacBio or Nanopore platforms has increased, which makes it easier to detect long insertions/deletions. However, because long read data have a critical disadvantage due to their relatively high cost, many next generation sequencing data are produced mainly by short read sequencing machines. Here, we constructed programs to detect so-called unmapped regions (UMRs, where no reads are mapped on the reference genome), scanned 40 Korean genomes to select UMR long deletion candidates, and compared the candidates with the long deletion break points within the genomes available from the 1000 Genomes Project (1KGP). An average of about 36,000 UMRs were found in the 40 Korean genomes tested, 284 UMRs were common across the 40 genomes, and a total of 37,943 UMRs were found. Compared with the 74,045 break points provided by the 1KGP, 30,698 UMRs overlapped. As the number of compared samples increased from 1 to 40, the number of UMRs that overlapped with the break points also increased. This eventually reached a peak of 80.9% of the total UMRs found in this study. As the total number of overlapped UMRs could probably grow to encompass 74,045 break points with the inclusion of more Korean genomes, this approach could be practically useful for studies on long deletions utilizing short read data.

Detection of Epstein-Barr virus in the inflammatory and neoplastic uterine cervical lesions (자궁경부의 염증 및 종양병변에서 Epstein-Barr 바이러스의 검출)

  • Jeong, Hye-Jin;Lee, Eung-Seok;Lin, Zhen-Hua;Park, Seol-Hee;Kang, Jae-Sung;Kim, In-Sun
    • The Korean Journal of Cytopathology
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The prevalence of Epstein-Barr virus(EBV) in the uterine cervix was investigated to define the possible etiologic role in cervical carcinogenesis. The viral genotyping and LMP-1 30bp deletion were also stooled. The materials included 169 uterine cervical swabs(152 within normal limits, 12 atypical squamous cells of uncertain significance, 3 low grade intraepithelial lesions, and 2 high grade squamous intraepithelial lesion) and 104 uterine cervical tissues obtained from hysterectomy specimens(32 carcinoma in situ, 9 microinvasive squamous cell carcinomas, 37 invasive squamous cell carcinomas, 7 adenocarcinomas, 7 adenosquamous carcinomas, and 12 cervicitis). EBV detected by PCR for EBNA-1 was positive in 52(56.5%) of 92 invasive and noninvasive cervical carcinomas, and 80(48.8%) of 164 inflammatory or normal cervices. The viruses detected in carcinomas were all type A, and LMP-1 30bp deletion form was more frequent in premalignant and malignant cervical lesions than in nonneoplastic cervices. From the above results, it may be concluded that EBV is one of common viruses detected in uterine cervix of Korean women, and type A virus and LMP-1 30bp deletion form may have a role in cervical carcinogenesis.

  • PDF

Rapid Diagnosis of CMT1A Duplications and HNPP Deletions by Multiplex Microsatellite PCR

  • Choi, Byung-Ok;Kim, Joonki;Lee, Kyung Lyong;Yu, Jin Seok;Hwang, Jung Hee;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.39-48
    • /
    • 2007
  • Charcot-Marie-Tooth (CMT) disease and hereditary neuropathy with liability to pressure palsies (HNPP) are frequent forms of genetically heterogeneous peripheral neuropathies. Reciprocal unequal crossover between flanking CMT1A-REPs on chromosome 17p11.2-p12 is a major cause of CMT type 1A (CMT1A) and HNPP. The importance of a sensitive and rapid method for identifying the CMT1A duplication and HNPP deletion is being emphasized. In the present study, we established a molecular diagnostic method for the CMT1A duplication and HNPP deletion based on hexaplex PCR of 6 microsatellite markers (D17S921, D17S9B, D17S9A, D17S918, D17S4A and D17S2230). The method is highly time-, cost- and sample-saving because the six markers are amplified by a single PCR reaction and resolved with a single capillary in 3 h. Several statistical and forensic estimates indicated that most of these markers are likely to be useful for diagnosing the peripheral neuropathies. Reproducibility, as determined by concordance between independent tests, was estimated to be 100%. The likelihood that genotypes of all six markers are homozygous in randomly selected individuals was calculated to be $1.6{\times}10^{-4}$, which indicates that the statistical error rate for this diagnosis of HNPP deletion is only 0.016%.

Transmembrane Helix of Novel Oncogene with Kinase-Domain (NOK) Influences Its Oligomerization and Limits the Activation of RAS/MAPK Signaling

  • Li, Ying-Hua;Wang, Yin-Yin;Zhong, Shan;Rong, Zhi-Li;Ren, Yong-Ming;Li, Zhi-Yong;Zhang, Shu-Ping;Chang, Zhi-Jie;Liu, Li
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Ligand-dependent or independent oligomerization of receptor protein tyrosine kinase (RPTK) is often an essential step for receptor activation and intracellular signaling. The novel oncogene with kinase-domain (NOK) is a unique RPTK that almost completely lacks an ectodomain, expresses intracellularly and activates constitutively. However, it is unknown whether NOK can form oligomer or what function oligomerization would have. In this study, two NOK deletion mutants were generated by either removing the ectodomain ($NOK{\Delta}ECD$) or including the endodomain (NOK-ICD). Co-immunoprecipitation demonstrated that the transmembrane (TM) domain of NOK was essential for its intermolecular interaction. The results further showed that NOK aggregated more closely as lower order oligomers (the dimer- and trimer-sized) than either deletion mutant did since NOK could be crosslinked by both Sulfo-EGS and formaldehyde, whereas either deletion mutant was only sensitive to Sulfo-EGS. Removing the NOK TM domain (NOK-ICD) not only markedly promoted higher order oligomerization, but also altered the subcellular localization of NOK and dramatically elevated the NOK-mediated constitutive activation of extracellular signal-regulated kinase (ERK). Moreover, NOK-ICD but not NOK or $NOK{\Delta}ECD$ was co-localized with the upstream signaling molecule RAS on cell membrane. Thus, TM-mediated intermolecular contacting may be mainly responsible for the constitutive activation of NOK and contribute to the autoinhibitory effect on RAS/MAPK signaling.

WWC1 and NF2 Prevent the Development of Intrahepatic Cholangiocarcinoma by Regulating YAP/TAZ Activity through LATS in Mice

  • Park, Jaeoh;Kim, Jeong Sik;Nahm, Ji Hae;Kim, Sang-Kyum;Lee, Da-Hye;Lim, Dae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.491-499
    • /
    • 2020
  • Hippo signaling acts as a tumor suppressor pathway by inhibiting the proliferation of adult stem cells and progenitor cells in various organs. Liver-specific deletion of Hippo pathway components in mice induces liver cancer development through activation of the transcriptional coactivators, YAP and TAZ, which exhibit nuclear enrichment and are activated in numerous types of cancer. The upstream-most regulators of Warts, the Drosophila ortholog of mammalian LATS1/2, are Kibra, Expanded, and Merlin. However, the roles of the corresponding mammalian orthologs, WWC1, FRMD6 and NF2, in the regulation of LATS1/2 activity and liver tumorigenesis in vivo are not fully understood. Here, we show that deletion of both Wwc1 and Nf2 in the liver accelerates intrahepatic cholangiocarcinoma (iCCA) development through activation of YAP/TAZ. Additionally, biliary epithelial cell-specific deletion of both Lats1 and Lats2 using a Sox9-CreERT2 system resulted in iCCA development through hyperactivation of YAP/TAZ. These findings suggest that WWC1 and NF2 cooperate to promote suppression of cholangiocarcinoma development by inhibiting the oncogenic activity of YAP/TAZ via LATS1/2.