• Title/Summary/Keyword: Delayed resin filling

Search Result 4, Processing Time 0.023 seconds

THE EFFECT OF DELAYED COMPOSITE RESIN FILLING ON MICROTENSILE BOND STRENGTH (복합레진의 지연충전이 미세인장 결합강도에 미치는 영향)

  • Park, Hyun-Sik;Cho, Young-Gon;Park, Byung-Cheul;Kim, Jong-Uk;Choi, Hee-Young;Kim, Jong-Jin;Jin, Cheul-Hee;Yoo, Sang-Hoon;Ki, Young-Jae
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.233-238
    • /
    • 2004
  • The purpose of this study was to evaluate the effect of immediate or delayed composite resin filling on dentinal microtensile bond strength (${\mu}TBS$) after applied the adhesive. The coronal dentin of human third molars was exposed. Single-Bond or One-Step was applied on the dentin surfaces. and composite resin were constructed immediately (group 1) or 5min., 10min., 15min., 20min. and 30min. (groups 2-6) after an adhesive was applied. The specimens were sectioned and made bar-shaped. Each surface area of them was about $1\textrm{mm}^2$. The ${\mu}TBS$ test was performed by EZ test. The results were analysed by One-way ANOVA and Tukey's test at 95% significance level. The results suggested that the ${\mu}TBS$ of Single-Bond to dentin was decreased when the composite resin was constructed 20min. and 30min. after Single-Bond was applied. But the ${\mu}TBS$ of One-Step was not affected by delayed composite resin filling.

An Experimental Study on the Effect of the "Heliosit" Composite Resin to Pulp Tissue (Heliosit복합레진이 치수조직에 미치는 영향에 관한 실험적 연구)

  • Maing, Hyung-Yul;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • The experimental study was made to investigate the effect of the "Heliosit" composite resin on the dental pulp. The 36 class V cavities were prepared on the healthy permanent teeth of 3 days, and were divided into 5 groups and filled with the experimental filling materials. Control group: Zinc Oxide-Eugenol cement filling Experimental groups: Group 1: Dentin Adhesit application & Heliosit filling with or without dycal base Group 2: Heliosit filling with or without dycal base Group 3: Durafill filling with dycal base Group 4: Hipol filling with dycal base Animals were sacrificed after 1 weeks, 2 weeks, and 4 weeks following operation. The teeth were decalcified, sectioned and stained with hematoxylin and eosin. The results obtained form this study were as follows: 1. All experimental group showed slight pulp response. 2. Dentin Adhesit group showed minimal pulp response in both dycal bases and no base cases. 3. In group 2, mild pulp response was found in early stage and repairing process was found as the time elapsed. In no base cases, healing process was delayed slightly. 4. There was little difference in the result among Heliosit group, Durafill group and Hipol group.

  • PDF

Microtensile bond strength of resin inlay bonded to dentin treated with various temporary filling materials (임시 가봉재가 상아질과 레진 인레이의 미세인장 결합 강도에 미치는 영향)

  • Kim, Tae-Woo;Lee, Bin-Na;Choi, Young-Jung;Yang, So-Young;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Objectives: This study was aimed to determine the effects of temporary sealing materials on microtensile bond strength between resin-coated dentin and resin inlay and to compare the bonding effectiveness of delayed dentin sealing and that of immediate dentin sealing. Materials and Methods: The teeth were divided into 4 groups: group 1, specimens were prepared using delayed dentin sealing after temporary sealing with zinc oxide eugenol (ZOE); group 2, specimens were prepared using immediate dentin sealing and ZOE sealing; group 3, specimens were prepared using immediate dentin sealing and Dycal (Dentsply) sealing; group 4, specimens were prepared using immediately sealed, and then temporarily sealed with a resin-based temporary sealing material. After removing the temporary sealing material, we applied resin adhesive and light-cured. Then the resin inlays were applied and bonded to the cavity with a resin-based cement. The microtensile bond strength of the sectioned specimens were measured with a micro-tensile tester (Bisco Inc.). Significance between the specimen groups were tested by means of one-way ANOVA and multiple Duncan's test. Results: Group 1 showed the lowest bond strength, and group 4 showed the highest bond strength (p < 0.01). When temporary sealing was performed with ZOE, immediate dentin sealing showed a higher bonding strength than delayed dentin sealing (p < 0.01). Conclusions: Based on these results, immediate dentin sealing is more recommended than delayed dentin sealing in bonding a resin inlay to dentin. Also, resin-based temporary sealing materials have shown the best result.

Biocompatibility and Bioactivity of Four Different Root Canal Sealers in Osteoblastic Cell Line MC3T3-El

  • Jun, Nu-Ri;Lee, Sun-Kyung;Lee, Sang-Im
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.243-250
    • /
    • 2021
  • Background: Endodontic sealers or their toxic components may become inflamed and lead to delayed wound healing when in direct contact with periapical tissues over an extended period. Moreover, an overfilled sealer can directly interact with adjacent tissues and may cause immediate necrosis or further resorption. Therefore, the treatment outcome conceivably depends on the endodontic sealer's biocompatibility and osteogenic potential. This study aimed to evaluate the cell viability and osteogenic effects of four different sealers in osteoblastic cells. Methods: AH Plus (resin-based sealer), Pulp Canal Sealer EWT (zinc oxide-eugenol sealer), BioRoot RCS (calcium silicate-based sealer), and Well-Root ST (MTA-based calcium silicate sealer) were mixed strictly according to the manufacturer's instructions, and dilutions of sealer extracts (1/2, 1/5 and 1/10) were determined. Cell viability was measured using the water-soluble tetrazolium-8 (WST-8) assay. Differentiation was assessed by alkaline phosphatase (ALP) activity and mineralized nodule formation by Alizarin Red S staining. Results: The cell viability of the extracts derived from the sealers excluding Well-Root ST was concentration dependent, with sealer extracts having the least viability at a 1/2 dilution. At sealer extract dilution of 1/10, the test groups showed the same survival rate as that control group, with the exception of BioRoot RCS. Among all experimental groups, BioRoot RCS showed the highest cell viability after 48 hours. The ALP activity was significantly higher in a concentration-dependent manner. Furthemore, all four materials promoted ALP activity and mineralized nodule formation compared to the control at 1/10 dilutions. Conclusion: This is the first study to highlight the differences in biological activity of these four materials. These results suggest that the composition of root canal sealers appears to alter the form of biocompatibility and osteoblastic differentiation.