This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).
In future complex and diverse battlefield situations, the existing command system faces the challenge of delayed human judgement of strategy and low objectivity. This paper proposes an artificial intelligence model that takes situation information and course of action simulation results as input and automatically assigns scores to various evaluation elements and a comprehensive score. This tool is expected to assist the commander in making decisions, reduce the time required for making judgments, and promote impartial decision-making.
자동차 등록대수와 비례하여 증가하는 교통 혼잡은 도시의 사회경제 발전의 저해 요소로 작용하고 있다. 본 논문은 VDS(Vehicle Detection System)을 통한 데이터를 입력 변수로 사용한다. 본 연구의 목적은 교통 흐름을 단순히 2단계(원할, 정체)가 아닌 5단계(원할, 다소 지체, 지체, 다소 정체, 정체)로 더 정교하게 예측하고, 이 예측에서 가장 정확도가 높은 모델인 Catboost 모델과 다른 모델들을 비교하는 것이다. 이를 위해 본 논문에서는 머신러닝 알고리즘인 Catboost 모델을 통해 5가지 단계를 예측하고 정확도를 다른 머신러닝 알고리즘들과 비교, 분석한다. 또한, 하이퍼 파라미터(Hyper Parameter) 튜닝 및 원-핫 인코딩(One-Hot Encoding) 전처리를 거치지 않은 Catboost 모델과 랜덤 선택(RandomizedSearchcv)을 통해 튜닝 및 데이터 전처리를 거친 모델을 비교, 분석한다. 분석 결과 하이퍼 파라미터 튜닝을 하지 않은 초기 Catboost 모델이 정확도 93%를 보이며 가장 높은 정확도를 기록하였다. 따라서 본 연구는 두가지 의의를 가진다. 첫번째로, 초기 세팅된 파라미터들이 적용된 Catboost 모델이 다수의 범주형 변수를 포함하는 교통 흐름 예측에서 다른 머신러닝, 딥러닝 모델들보다 성능이 높다는 결론을 도출했다는 점에서 의의가 있다. 두번째로, 기존 2단계로 예측하던 교통 흐름을 5단계로 예측함으로써 더욱 정교한 교통 흐름 예측 모델을 제안한다는 점에서 의의를 가진다.
본 논문은 재진입 비행체의 TAEM 구간 유도와 제어에 관하여 기술 하였다. TAEM 구간은 공기의 밀도와 비행체의 속도의 범위가 큰 특징을 가지고 있으며, 이들 조건하에 TAEM 구간의 유도를 위한 궤적과 비행체의 상태값을 최적화하였다. 최적화된 상태값은 7가지의 상태이며, 상태값은 Down-range, Cross-range, 비행체의 고도, 속도, 경로각, 방위각, 그리고 비행 거리이다. 최적화 연산을 수행하기 위하여 DIDO 프로그램을 사용하였다. 재진입 비행체의 제어를 위하여 인공 신경망을 이용한 되먹임 선형화 제어법을 사용하였다. 비행체의 동역학 모델은 역전파 모델을 통하여 근사화 되고, 근사화된 동역학 모델과 지연된 제어 입력, 플랜트 출력으로부터 새로운 제어 입력을 생성하게 된다. 이를 이용하여 본 논문에서는 앞서 최적화된 7가지의 상태값을 추종하는 결과를 보였다.
Background : Severance Hospital is an university hospital which has 1,580 beds. A LAN system was installed in the Medical Record Department in 1992 and discharge abstract data have been added to the discharge abstract database(DB) The previous work flow in the Medical Record Department had 5 levels: 1) chart collection from wards, 2) assembling, 3) abstracting data from medical record on worksheet by 2 RRAs, 4) checking deficiencies and coding diagnosis and procedures by 4 RRAs, 5) inputting the data into the discharge abstract data base by 1 RRA. The average processing time took 19.3 days from the patient discharge date. It had the production of monthly statistical report delayed. Besides, it caused the users in the hospital to complain. Methods : A CQI team was organized to find a way to shorten the processing time less than 10 days. The team identified the factors making the processing time long and integrated three levels from the 3rd level into one. Each of 7 RRAs performed the integrated level on her workstation instead of taking one of three separate levels. The comparison of processing time before and after the changes was made with 3'846 discharges of April, 1999 and 4,189 discharges of August, 1999. Results : The average processing time was shortened from 19.3 days to 8.7 days. Especially the integrated level took only 3.6 days, compared with 12.3 days before the change. The percentage of finishing up the whole processing within 10 days from discharge was increased up to 77.6%, which was 2.4% before the integration. The prevalence of error in data input was not increased in the new method. Conclusions : The integrated processing method has the following advantages: 1) the expedition of production of monthly statistical report, 2) the increase of utilizing rate of dischare abstract data by Billing Dept, Emergency Room, QI Dept., etc., 3) the improvement of intradepartmental work follow, 4) the enhancement of medical record quality by checking the deficiencies earlier than before.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.59-64
/
2001
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to chose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state- action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem. we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL)as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.
A field experiment was carried out to observe the weed control effects of vetch and to evaluate vetch characteristics on clay loam soil in no-till direct-sown rice-vetch cropping systems. The effects of weed control, forage productivity, and N content of vetch plants were investigated. With the progress of plant growth, density of Chinese milk vetch (Astragalus sinicus L.) gradually decreased, but densities of foxtail and other weeds decreased steeply due to the depression by the over-shaded vetch canopy in a no-till direct-sown rice-vetch cropping paddy field. The vetch density in tillage systems was lower than in notillage cropping systems. Lower vetch density occurred with an increase in foxtail density and other weeds. Weed control effect increased by the progress of vetch growth, which indicated that the vetch canopy over-shaded the weeds. Vetch straw was degraded rapidly submergence after with water at the time of wet sowing of rice. Early harvesting of vetch seed resulted in lower seed germination. To acquire enough seedlings without re-sowing, the harvesting of seed should be delayed at least 28 days after the flowering stage in order to ensure the vetch population is sustainable in a no-till direct-sown rice-vetch cropping system. In order to improve the survival of vetch plants, vetch seeds should germinate from the heading .stage to before the full-ripening stage of rice plants. To enhance the percent of over-wintering survival, vetch seeds should germinate no later than the end of October in southern Korea. The dry weight of vetch plants increased with the progress of vetch growth until the flowering stage but N content decreased for 30 days from before the flowering stage (2.9%) until the ripening stage (1.8%). We concluded that Chinese milk vetch could have an effect on weed control before the flowering stage, sustainability without re-sowing of seed annually, and effective green manure for rice pre-crop in no-till direct-sown rice-vetch relay cropping systems.
한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
/
pp.321-324
/
2001
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement Beaming is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement loaming is different from supervised teaming in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement loaming algorithms like Q-learning do not require defining or loaming any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning(AMMQL) as an improvement of the existing Modular Q-Learning(MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.
무인항공기가 복잡한 지형이나 위험 지역에서 안전한 비행을 하기 위해서는 요구되는 경로를 정밀하게 추종할 수 있는 제어기법이 필요하다. 경로추종을 위해 사용되는 PID 제어기에서는 경로의 곡률을 앞먹임하여 추종성능을 개선할 수 있다. 한편 경로를 정밀 추종하기 위해서는 제어기의 이득을 크게 하는 것이 필요하나 비행체의 응답속도가 느린 경우 큰 경로 추종 이득을 사용할 경우 성능 저하 또는 불안정성이 발생할 수 있다. 여기서는 응답지연을 고려하여 앞먹임을 갖는 PID제어기의 설계방법을 고려하였다. 앞먹임에 필요한 경로정보를 간단히 얻기 위해 주어진 경로를 3차 스플라인 방법을 적용하여 3차 다항식으로 나타내었다. 설계한 제어기의 추종성능을 평가하기 위해 높은 고도에서 운용되는 느린 횡방향 동특성을 갖는 무인항공기에 대해 비선형 시뮬레이션을 수행하였다. 제어기에서는 횡방향 동특성을 1차 모델로 가정하여 반영하였다. 시뮬레이션을 통하여 동특성을 고려한 경우는 비행체가 주어진 경로를 매우 정밀하게 추종함을 확인하였다.
In this study, the numerical model was developed to evaluate the observational environment of sunshine duration and, for evaluating the accuracy and utility of the model, it was verified against the observational data measured at Dae-gu Automated Synoptic Observing System (ASOS) located in an urban area. Three-dimensional topography and building configuration as the surface input data of the model were constructed using a Geographic Information System (GIS) data. First, the accuracy of the computing planetary positions suggested by Paul Schlyter was verified against the data provided by Korea Astronomy and Space Science Institute (KASI) and the results showed that the numerical model predicted the Sun's position (the solar azimuth and altitude angles) quite precisely. Then, this model was applied to reproduce the sunshine duration at the Dae-gu ASOS. The observed and calculated sunshine durations were similar to each other. However, the observed and calculated sunrise (sunset) times were delayed (curtailed), compared to those provided by KASI that considered just the ASOS's position information such as latitude, longitude, and elevation height but did not consider the building and topography information. Further investigation showed that this was caused by not only the topographic characteristic (higher in the east and lower in the west) but also the buildings located in the southeast near the sunrise and the southwest near the sunset. It was found that higher building resolution increased the accuracy of the model. It was concluded that, for the accurate evaluation of the sunshine duration, detailed building and topography information around the observing sites was required and the numerical model developed in this study was successful to predict and/or the sunshine duration of the ASOS located in an urban area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.