• Title/Summary/Keyword: Delay factor

Search Result 586, Processing Time 0.037 seconds

The Real-Time Determination of Ionospheric Delay Scale Factor for Low Earth Orbiting Satellites by using NeQuick G Model (NeQuick G 모델을 이용한 저궤도위성 전리층 지연의 실시간 변환 계수 결정)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • For ionospheric correction of low earth orbiter (LEO) satellites using single frequency global navigation satellite system (GNSS) receiver, ionospheric scale factor should be applied to the ground-based ionosphere model. The ionospheric scale factor can be calculated by using a NeQuick model, which provides a three-dimensional ionospheric distribution. In this study, the ionospheric scale factor is calculated by using NeQuick G model during 2015, and it is compared with the scale factor computed from the combination of LEO satellite measurements and international GNSS service (IGS) global ionosphere map (GIM). The accuracy of the ionospheric delay calculated by the NeQuick G model and IGS GIM with NeQuick G scale factor is analyzed. In addition, ionospheric delay errors calculated by the NeQuick G model and IGS GIM with the NeQuick G scale factor are compared. The ionospheric delay error variations along to latitude and solar activity are also analyzed. The mean ionospheric scale factor from the NeQuick G model is 0.269 in 2015. The ionospheric delay error of IGS GIM with NeQuick G scale factor is 23.7% less than that of NeQuick G model.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Priority Control Using Delay Counter for ATM Switch (ATM 스위치에서 지연카운터를 이용한 우선순위 제어 기법)

  • 김변곤
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.339-342
    • /
    • 1998
  • The various services that a broadband integrated services digital network (B-ISDN) carries, have a wide range of delay, delay jitter and cell loss probability requirements. Design of appropriate control schemes for B-ISDN is an extremely important and challenging problem. In this paper, we proposes a priority control scheme with a delay counter and a cell counter per each class type. The priority control for required service quality is performed with delay/loss factor obstained by comparing window counter with cell counter. The performance of proposed control scheme is estimated by computer simulation.

  • PDF

A study of the factors affecting delay in apartment projects in Vietnam

  • Luu, Truong-Van;Kim, Soo-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.718-721
    • /
    • 2007
  • Construction schedule plays a key role in project management due to its influence on the project success. Thus, it is important to identify factors affecting construction delay. The major objective of this study is to identify and evaluate factors affecting construction delay in apartment projects in Vietnam. The findings confirmed that financial difficulties of owners and contractors, contractors without adequate experience, non-available materials on time, slow site clearance, inappropriate construction methods, defective works and reworks, and lack of capable owners/project managers are the major causes of delay in apartment projects.

  • PDF

Performance Analysis of Coordinated Cognitive Radio Networks under Fixed-Rate Traffic with Hard Delay Constraints

  • Castellanos-Lopez, S. Lirio;Cruz-Perez, Felipe A.;Rivero-Angeles, Mario E.;Hernandez-Valdez, Genaro
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.130-139
    • /
    • 2014
  • Due to the unpredictable nature of channel availability, carrying delay-sensitive traffic in cognitive radio networks (CRNs) is very challenging. Spectrum leasing of radio resources has been proposed in the so called coordinated CRNs to improve the quality of service (QoS) experienced by secondary users (SUs). In this paper, the performance of coordinated CRNs under fixed-rate with hard-delay-constraints traffic is analyzed. For the adequate and fair performance comparison, call admission control strategies with fractional channel reservation to prioritize ongoing secondary calls over new ones are considered. Maximum Erlang capacity is obtained by optimizing the number of reserved channels. Numerical results reveal that system performance strongly depends on the value of the mean secondary service time relative to the mean primary service time. Additionally, numerical results show that, in CRNs without spectrum leasing, there exists a critical utilization factor of the primary resources from which it is not longer possible to guarantee the required QoS of SUs and, therefore, services with hard delay constraints cannot be even supported in CRNs. Thus, spectrum leasing can be essential for CRN operators to provide the QoS demanded by fixed-rate applications with hard delay constraints. Finally, the cost per capacity Erlang as function of both the utilization factor of the primary resources and the maximum allowed number of simultaneously rented channels is evaluated.

A Large-Signal Analysis of a Ring Oscillator with Feed-Forward and Negative Skewed Delay (부 스큐 지연 방식과 피드포워드 방식을 사용한 링 발진기의 대신호 해석)

  • Lee, Jeong-Kwang;Yi, Soon-Jai;Jeong, Hang-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1332-1339
    • /
    • 2010
  • This paper presents a large signal analysis of ring-type oscillators with feed forward and negative skewed delay scheme. The analysis yields the frequency increase factor due to two schemes. The large signal analysis is needed, because small signal model is limited to the initial stage of oscillation[1]. For verification of the frequency increase factor, simulation were done under the same conditions for the two different types of ring oscillators, i.e., with and without feed forward and negative skewed delay scheme. Simulation results are in good agreement with predictions based on analysis.

Delay Factor Analysis and Process Enhancement System Development Focusing on Masonry Work (조적공사에서의 작업 지연 요소 도출 및 개선 시스템 제안)

  • Park, Min Ha;Lee, Hye Lin;Ko, Yong-Ho;Han, SeungWoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.119-120
    • /
    • 2015
  • Appropriate management of the finish works in construction project is one of most important activities that must be conducted considering the total duration of the project. Masonry work is a fundamental process that is performed in the preliminary steps of finish works. However, it has been investigated that the analysis of delay factors affecting masonry work has been neglected in the domestic construction site. Therefore, this study deducts delay factors affecting masonry work by literature review and survey on site engineers and labors. This study has been conducted as a preliminary step of developing a construction project interference management system which is expected to suggest objective information for the decision making in construction sites.

  • PDF

TCP-GT: A New Approach to Congestion Control Based on Goodput and Throughput

  • Jung, Hyung-Soo;Kim, Shin-Gyu;Yeom, Heon-Young;Kang, Soo-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.499-509
    • /
    • 2010
  • A plethora of transmission control protocol (TCP) congestion control algorithms have been devoted to achieving the ultimate goal of high link utilization and fair bandwidth sharing in high bandwidth-delay product (HBDP) networks. We present a new insight into the TCP congestion control problem; in particular an end-to-end delay-based approach for an HBDP network. Our main focus is to design an end-to-end mechanism that can achieve the goal without the assistance of any network feedback. Without a router's aid in notifying the network load factor of a bottleneck link, we utilize goodput and throughput values in order to estimate the load factor. The obtained load factor affects the congestion window adjustment. The new protocol, which is called TCP-goodput and throughput (GT), adopts the carefully designed inversely-proportional increase multiplicative decrease window control policy. Our protocol is stable and efficient regardless of the link capacity, the number of flows, and the round-trip delay. Simulation results show that TCP-GT achieves high utilization, good fairness, small standing queue size, and no packet loss in an HBDP environment.

Delay Spread Measurement and Analysis in 3 GHz and 6 GHz Indoor Environments (3 GHz, 6 GHz 실내 환경의 지연 확산 측정 및 분석)

  • Lee, Seong-Hun;Lee, Hwa-Choon;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • In this paper, delay diffusion for exhibition hall and conference room was measured and analyzed in the indoor environment of the building. Scenarios for the indoor environment of the two buildings were written. also, the system configuration and measurement methods were conducted under the same conditions. The measurement conditions were set to 3 GHz and 6 GHz of center frequencies and analysis band selected 2 GHz. The measurement system consisted of vector network analyzer, power amplifier, omni-directional transmit and receive antenna, and transmission line. According to the indoor environment scenario of the two buildings, the location of the receiving antenna was divided into three zones based on the location of the transmitting antenna and this was measured at 1 m intervals according to 18 locations. The power delay profiles, RMS delay spread, and K-factor results of two buildings were compared and analyzed.

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF