• Title/Summary/Keyword: Delay Change

Search Result 680, Processing Time 0.025 seconds

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Predicting Construction Project Cost using Sensitivity Analysis in Stochastic Project Scheduling Simulation (SPSS) (확률 통계적 일정 시뮬레이선 - 민감도 분석을 이용한 최종 공사비 예측)

  • Lee Dong-Eun;Park Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.80-90
    • /
    • 2005
  • Activity durations retain probabilistic and stochastic natures due to diverse factors causing the delay or acceleration of activity completion. These natures make the final project duration to be a random variable. These factors are the major source of financial risk. Extending the Stochastic Project Scheduling Simulation system (SPSS) developed in previous research; this research presents a method to estimate how the final project duration behaves when activity durations change randomly. The final project cost is estimated by considering the fluctuation of indirect cost, which occurs due to the delay or acceleration of activity completion, along with direct cost assigned to an activity. The final project cost is estimated by considering how indirect cost behaves when activity duration change. The method quantifies the amount of contingency to cover the expected delay of project delivery. It is based on the quantitative analysis to obtain the descriptive statistics from the simulation outputs (final project durations). Existing deterministic scheduling method apply an arbitrary figures to the amount of delay contingency with uncertainty. However, the stochastic method developed in this research allows computing the amount of delay contingency with certainty and certain degree of confidence. An example project is used to illustrate the quantitative analysis method using simulation. When the statistical location and shape of probability distribution functions defining activity durations change, how the final project duration and cost behave are ascertained using automated sensitivity analysis method

Ignition Characteristics of Petroleum-based and Bio Aviation Fuel According to the Change of Temperature and Pressure (온도와 압력의 변화에 따른 석유계 및 바이오항공유의 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.238-244
    • /
    • 2019
  • In this study, the ignition characteristics of petroleum-based aviation fuel (Jet A-1), bio aviation fuel (Bio-6308), and blended aviation fuel (50:50, v:v) were analyzed in accordance with change of temperature and pressure. The ignition delay time of each aviation fuel was measured by combustion research unit (CRU) and the compositions of the fuels were analyzed by GC/MS and GC/FID for qualitative and quantitative results. From the results, it was confirmed that the ignition delay times of all aviation fuels were shortened with increasing temperature and pressure. In particular, the effect of temperature was larger than the effect of pressure. Also, the ignition delay time of Jet A-1 was the longest at all measurement conditions, and it was judged that this result is because of the structurally stable characteristics of the benzyl radical generated during the oxidation reaction of the aromatic compound (about 22.48%) in Jet A-1. Also, it was confirmed that Jet A-1 had no section where the degree of shortening of ignition delay time was decreased by increasing temperature, which was because the benzyl radical inhibits the response that can affect the negative temperature coefficient (NTC). The ignition characteristics of blended aviation fuel (50:50, v:v) showed a similar tendency to those of Jet A-1, rather than to those of Bio-6308, so that the blended aviation fuel (50:50, v:v) can be applied to the existing system without any change.

A Study on the Change of Burning Rate of Zirconium-Nickel Delay Elements Depending on the Ambient Temperature (Zr/Ni계 지연제의 주변 온도에 따른 연소속도 변화 연구)

  • Kim, Ho-Sub;Lim, Ho Young;Kang, Yo Han;Kim, Do Hyun;Lee, Geun Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.82-89
    • /
    • 2020
  • Among the explosives in ammunition, the delay elements, which are used as a retardant, could be influenced by the ambient temperature in the Republic of Korea, where the highest and lowest average annual temperature difference is clear. On the other hand, there has been no domestic research on this. This study examined the linear burning rates of the zirconium-nickel delay elements depending on the ambient temperature in South Korea. The ambient temperature data of South Korea were obtained from the meteorological administration, which was used to set the experimental conditions. The operational time for the K414 fuze was measured by changing the ambient temperature by 10 ℃ from -40 ℃ to 50 ℃. To convert the delay time into the burning rates, the height of the delay element in the K414 fuze body was used. The results indicated that the characteristics of the burning rates for the zirconium-nickel delay element could be estimated as linear, and both the burning rates and the delay time of the zirconium-nickel delay element were 2.73mm/ms and -4.18ms, respectively. This led to an approximately 80 ms delay time difference in the environment where the highest and lowest average annual temperature difference was above 20 ℃. Therefore, the delay time reflecting the ambient temperature should be considered when the test evaluation criteria of zirconium-nickel delay elements are established.

An Improved Timing-level Gate-delay Calculation Algorithm (개선된 타이밍 수준 게이트 지연 계산 알고리즘)

  • Kim, Boo-Sung;Kim, Seok-Yoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.8
    • /
    • pp.1-9
    • /
    • 1999
  • Timing-level circuit analyses are used to obtain fast and accurate results, and the analysis of gate and interconnect delay is necessary to validate the correctness of circuit design. This paper proposes an efficient algorithm which simultaneously calculates the gate delay and the transition time of linearized voltage source for subsequent interconnect delay calculation. The notion of effective capacitance is used to calculate the gate delay and the transition time of linearized voltage source which considers the on-resistance of driving gate. The procedure for obtaining the gate delay and the transition time of linearized voltage source has been developed through an iterative operation using the precharacterized data of gates. While previous methods require extra information for the transition time calculation of linearized voltage sources, our method uses the derived data during the gate delay calculation process, which does not require any change in the precharacterization process.

  • PDF

Microwave Group Delay Time Adjuster Using Resonance Circuit (공진 회로를 이용한 마이크로파 군지연 시간 조정기)

  • Seo Su-Jin;Park Sang-Keun;Choi Heung-Jae;Jeong Yong-Chae;Yun Jae-Hun;Kim Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents a method to control group delay tine using a resonance circuit. The group delay time adjuster(GDTA) that can control signal group delay time comprises a variable capacitance and a variable equivalent inductor. These are coupled in parallel at a node and also controlled by two bias voltages separately, A variable equivalent inductor is realized a transmission line terminated a variable capacitor. Group delay time can be controlled by change of capacitance and inductance, but the resonating frequency is fixed. When the proposed GDTA is fabricated on RFID Korean frequency band$(908.5{\sim}914 MHz)$, a group delay variation is obtained about 3 ns.

Optimal Scan time Analysis for Pancreatic Cancer Distinction in Dual time PET-CT Exam (이중시간 PET/CT 검사에서 췌장암 판별을 위한 최적의 Scan time 분석)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, present the most useful delay scan time by statistical analysis of SUVm data for 30 suspected pancreatic cancer patients. Two statistical analysis and a mathematical model was applied to the theoretical formula by glucose and insulin mechanics, and a mathematical model was created. Statistical analysis was performed via Metlab p/g. Optimal delay scan time was suggested by Metlab p/g for the change of SUV value over time.In this study, for diagnosis pancreatic cancer by dual time point PET/CT, propose optimal delay scan time 131.5 minuts. The proposed delay scan time showed statistical reliability applicable to the diagnosis of pancreatic cancer (p<0.05). Delayed scanning with the suggested delay scan time of 131.5 minutes is considered to be useful for the diagnosis of pancreatic cancer compared to general PET / CT scan.hen the delayed test is performed with the proposed delay scan time 131.5 minuts, Compared with general PET/CT scans.

Bio-inspired Load Balancing Routing for Delay-Guaranteed Services in Ever-Changing Networks

  • Kim, Young-Min;Kim, Hak Suh;Jung, Boo-Geum;Park, Hea-Sook;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.414-424
    • /
    • 2013
  • We consider a new load balancing routing for delay-guaranteed services in the network in which the traffic is dynamic and network topologies frequently change. For such an ever-changing network, we propose a new online load balancing routing called AntLBR, which exploits the ant colony optimization method. Generally, to achieve load balancing, researchers have tried to calculate the traffic split ratio by solving a complicated linear programming (LP) problem under the static network environment. In contrast, the proposed AntLBR does not make any attempt to solve this complicated LP problem. So as to achieve load balancing, AntLBR simply forwards incoming flows by referring to the amount of pheromone trails. Simulation results indicate that the AntLBR algorithm achieves a more load-balanced network under the changing network environment than techniques used in previous research while guaranteeing the requirements of delay-guaranteed services.

New Permanent Magnet Synchronous Motor Current Sensing Phase Delay Compensation Method

  • Park, Sei-Hun;Kim, Il-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.241-246
    • /
    • 2016
  • This paper presents a method that can improve the performance of permanent magnet synchronous motor current control by minimizing the measured current phase delay caused by the Low Pass Filter(LPF) used to cut off the noises that flowed in when feedback currents are measured. Although existing methods that change the Cutoff Frequency of the LPF can minimize phase delays during high speed rotations, their noise cutoff effects are much lower and this may lead to the decline of control performance. Therefore, in this study, an algorithm that can compensate current phase delays through relatively simple calculations from the synchronous motor d-q axis coordinate transformation matrix and the inverse transformation matrix is proposed and the validity of the proposed method is verified by comparing the waveform of the calculated current with the waveform of actual currents through simulations and experiments.

A study on the design of a hovering flight controller for a model helicopter using time delay control (시간지연제어 기법을 이용한 모형헬리콥터의 정지비행제어기 설계)

  • 안현식;박철규;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.763-766
    • /
    • 1996
  • A model helicopter is an unstable, multi-input multi-output nonlinear system exposed to strong disturbances and its system parameters change continually. In this paper, Time Delay Control(TDC) is adopted for these reasons. TDC uses past observation of the system's response and the control input to directly modify the control action rather than adjusting the controller gains leading to a model independent robust controller. TDC can force the plant to follow an appropriate reference model, but the reference model cannot be chosen arbitrarily. In this paper the procedure of choosing a reference model and the performance of the controller are presented.

  • PDF