• 제목/요약/키워드: Dehydrogenase

검색결과 2,823건 처리시간 0.032초

호염성 세균의 생리적 특성

  • 송경숙;이정임;배무
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.517.3-518
    • /
    • 1986
  • 국내 염장식품 및 염전으로부터 세균을 분리하여, 호염성 세균의 NaCl 농도에 따른 성장범위, 생리적 및 효소학적 특성을 조사하고자 했다. 염전으로부터 NaCl 20%배지에서 14주와 총 16종류의 젓갈류에서 NaCl 10% 배지로 56균주의 호염성 세균을 분리하여 0, 5, 10, 15, 20, 25% NaCl농도에서 성장률을 조사하고 최적온도 및 배지조성과 함께 동정에 필요한 생리실험을 하였다. 또한 세포의 효소로서 Lactate dehydrogenase, Glucokinase, Glucose-6-phosphate dehydrogenase, Alanine dehydrogenase, Isocitrate dehydrogenase 등의 특성도 조사하였다. 선별한 균주중 Acinetobacter sp, 등이 관찰 조사되었으며 최적 성장 NaCl농도는 10%이고, 최적온도는 3$0^{\circ}C$이며, 25% NaCl, 45$^{\circ}C$에서 자란 Halobacterium sp. 등이 분리되었다. 그중 Acinetobacter strain H6는 단백분해효소와 탄수화물 분해효소의 생성능이 15>10>20% NaCl순이며, 특히 Lactate dehydrogenase 활성은 2>3>1>OM NaCl 순으로 나타났고, NaCl 대신 KCl을 사용했을 때는 3>2>1> OM순으로 활성이 나타났다.

  • PDF

Specificity of Alcohol Dehydrogenase from Clostridium acetobutylicum ATCC 4259

  • Kim, Byung-Hong;Zeikus, J.-Gregory
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권4호
    • /
    • pp.268-272
    • /
    • 1992
  • Alcohol dehydrogenase activity of Clostridium acetobutylicum ATCC 4259 was studied for its specificity against substrates in acidogenic and solventogenic cultures. The bacterium reduces propionate, valerate and caproate added to the medium to the corresponding alcohols. Acetaldehyde, propionaldehyde, butyraldhyde, pentanal, and hexanal were used as the substrates by alcohol dehydrogenase, and all were reduced to the corresponding alcohols with varying affinities and reaction velocities. Acetaldehyde showed the lowest affinity and lowest velocity while the other aldehydes showed similar $K_m\;and\;V_max$ values. NADPH was used as the electron donor for the reduction of aldehydes. Alcohol dehydrogenase activity was low in acidogenic culture, and high in solventogenic culture.

  • PDF

Klebsiella pneumoniae 균주의 세포외막으로부터 2-Furaldehyde Dehydrogenase의 부분정제에 관하여 (Partial Purification of the Outer Membrane-Associated 2-Furaldehyde Dehydrogenase from Klebsiella pneumoniae)

  • 이준우;이병웅;강사욱;하영칠;유병설;한홍의
    • 미생물학회지
    • /
    • 제24권4호
    • /
    • pp.370-376
    • /
    • 1986
  • From the outer membrane portion of Gram-negative Klebsiella pneumoniae, the activity of 2-furaldehyde dehydrogenase depending upon beta-nicotinamide adenine dinucleotide was detected. Cytoplasmic membrane was preferentially extracted from crude membrane with $Mg^{2+}$ and Triton X-100, and then outer membrane was collected by ultracentrifugation. The crude enzyme was obtained by solubilization of outer membrane with lysozyme, ethylene diamine tetraacetate and Triton X-100. Thereafter 2-furaldehyde dehydrogenase was partially purified through column chromatography on QAE-Sephadex Q-50 and Sephadex G-150 and the enzyme activity was analyzed by means of high performance liquid chromatography. The optimal pH for the activity of the enzyme was about 9.5 and the optimal temperature was about $85^{\circ}C$. The partially purified enzyme retained tis activity at $85^{\circ}C$ for 5 hours. The optimal concentration of Triton X-100 for the activity of the enzyme was about 1.5% in the reaction mixture.

  • PDF

Effects of Ginseng Saponins on Morphine 6-Dehydrogenase

  • Kim, Hack-Seang;Jeong, In-Sook
    • 생약학회지
    • /
    • 제25권2호
    • /
    • pp.160-166
    • /
    • 1994
  • The possible mechanisms of ginseng saponins on the inhibition of the development of morphine tolerance and physical dependence were investigated in the aspects of morphine metabolism by morphine 6-dehydrogenase. The administration of morphine causes a reduction of non-protein sulfhydryl contents in the liver, because morphinone metabolized from morphine by morphine 6-dehydrogenase conjugates with sulfhydryl compounds. However, ginseng saponins inhibited the activity of morphine 6-dehydrogenase which catalyzed the production of morphinone from morphine. In addition, ginseng saponins inhibited the reduction of non-protein sulfhydryl levels by increasing the level of hepatic glutathione. These results suggest that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and physical dependence. On the other hand, it was observed that less polar components of ginseng saponins with parent structures were more active components in vitro.

  • PDF

천연물로부터 알코올 탈수소효소 저해제 검색 (Screening of Alcohol Dehydrogenase Inhibitors from Natural Products)

  • 이현주;이강만
    • 약학회지
    • /
    • 제43권4호
    • /
    • pp.481-486
    • /
    • 1999
  • Excessive or long term ingestion of alcohol may cause hepatitis, cirrhosis, hepatic tumor and so on. Aldehyde and active form of free oxygen that are metabolites of alcohol in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and cytochrome P450. In connection with in vivo alcohol metabolism, more than one hundred natural products were screened for inhibition or activation of alcohol dehydrogenase. As a results, we found significant inhibition ($IC_50$) of ADH by methanolic extracts of Puerariae Radix ($61.2{\;}\mu\textrm{g}/ml$), Glycyrrhizae Radix ($105.0{\;}\mu\textrm{g}/ml$), Cinnamomi Ramulus ($7.0{\;}\mu\textrm{g}/ml$), Rhei Rhizoma ($36.7{\;}\mu\textrm{g}/ml$), Mori Cortex Radicis ($106.2{\;}\mu\textrm{g}/ml$), Chrysanthemi Flos ($112.2{\;}\mu\textrm{g}/ml$), Erycibes Caulis ($36.7{\;}\mu\textrm{g}/ml$), and Scutellariae Radix ($122.5{\;}\mu\textrm{g}/ml$)

  • PDF

Effects of Phellinus spp. Extract on Alcohol Metabolic Enzymes in Alcohol-treated Rats

  • Kim, Sung-Su
    • 대한의생명과학회지
    • /
    • 제22권2호
    • /
    • pp.53-59
    • /
    • 2016
  • Alcoholism is a significant health problem in the world. The liver is the first and primary target organ for alcohol metabolism. Alcohol dehydrogenase and aldehyde dehydrogenase play important roles in the metabolism of alcohol and aldehyde. In this study, I aimed to investigate the eliminatory effects of a Phellinus spp. extract on alcohol metabolism in drunken Sprague-Dawley (SD) rats. Male SD rats were given Phellinus spp. extract at 30 min after 40% (5 g/kg) alcohol ingestion. To assay the effect of Phellinus spp. extract on blood alcohol concentration, blood samples were taken from the tail vein at 1, 3 and 5 h after alcohol ingestion. The concentrations of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase in Phellinus spp. extract treated rat were significantly lower than that of the control with a time-dependent manner. In addition, the alanine aminotransferase and aspartate aminotransferase activities of Phellinus spp. extract-treated groups were altered compared to those of the control group. These results suggest that Phellinus spp. extract intake can have a positive effect on the reduction of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase concentrations in the blood and may alleviate acute alcohol-induced hepatotoxicity by altering alcohol metabolic enzyme activities. Phellinus spp. extract is thus a good nutraceutical candidate.

Zymomonas mobilis 알코올 탈수소 효소 유전자의 Cloning과 Escherichia coli 에서의 발현 (Cloning and Expression of the Structural Gene for Alcohol Dehydrogenase of Zymomonas mobilis in Escherichia coli)

  • Yoon, Ki-Hong;Shin, Byung-Sik;M.Y Pack
    • 한국미생물·생명공학회지
    • /
    • 제17권4호
    • /
    • pp.301-306
    • /
    • 1989
  • Zymomonas mobilis ATCC 10988로부터 분리된 chromosomal DNA를 제한효소 Sau3Al으로 부분 절단한 후 이를 BamHI으로 완전 절단하여 alkaline phosphatase를 처치한 pUC9과 ligation하여 Escherichia coli JM83을 형질전환시키는데 사용하였다. 알코올 탈수소 효소활성을 나타내는_대장균 형질전환체를 선별하기 위해 allyl alcohol을 사용하였는데 이 때 allyl alcohol을 함유한 LB 한천 배지에서 자라지 못하는 두개의 clones을 얻었다. 이들 clones으로부터 분리한 plasmids를 여러가지 제한효소로 처리하여 agarose gel 전기영동으로 분석한 결과 2.6kb 크기의 동일한 DNA 조각을 공유하고 있음이 밝혀졌으며 이들 plasmids를 함유하고 있는 대장균 형질전환체와 Z. mobilis에서 생성된 효소를 각기 polyacrylamide gel 전기영동한 후 효소활성을 염색하고 또한 알코올 기질특이성을 조사한 결과 이들 plasmids 가 Z. mebilis 의 alcohol dehydrogenase II 유전자를 함유하고 있음이 밝혀졌다.

  • PDF

Pseudomonas sp.의 탄소원에 따른 대사활성에 관한 연구 (Studies on the metabolic activities of Pseudomonas sp. in different carbon sources)

  • 배광성;이영녹
    • 미생물학회지
    • /
    • 제20권4호
    • /
    • pp.161-172
    • /
    • 1982
  • In order to compare the metabolic activities of methanol utilizing bacteria, Pseudomonas sp. grown in different carbon sources, changes in respiratory activities, prinicipal enzyme activities for the energy metabolism, and the macromolecular compositions of the cells grown on methanol or glucose were measured. 1. The respiratory activity of cells grown on methanol was higher than that of cells grown on glucose, while glucose exhibited the highest $O_2-consumption$ rate among the different respiratory substrates. 2. TRhe activity of hydroxy pyruvate reductase which participates in serine pathway was high in the cells grown on methanol. However, activities of NAD-linked alcohol dehydrogenase, formaldehyde dehydrogenase and formate dehydrogenase were slightly lower in the cells grown on glucose thant on methanol. 4. For succinic dehydrogenase and malic dehydrogenase which take part in TCA cycle, the specific activities were higher in the cells grown on methanol than in those grown on glucose. No activity of glucose-6-phosphate dehydrogenase, which participates in pentose monophosphate shunt, was detectable in the cells grown on either carbon sources. 5. Protein contents of the cells grown on methanol increased relatively compared with those of the cells grown on glucose. However, there are no changes in the contents of carbohydrate and nucleic acid.

  • PDF

갑상선 호르몬이 흰쥐 간세포내 엽산의 Polyglutamate 직쇄분포와 세포질 엽산 결합단백질의 결합성에 미치는 영향 (Effects of Thyroid Hormone on Pteroylpolyglutamate Chain Length and the Binding Activity of Folate Binding Protein in Rat Liver)

  • 민혜선
    • Journal of Nutrition and Health
    • /
    • 제32권4호
    • /
    • pp.369-375
    • /
    • 1999
  • Hyperthroidism in known to alter the activity of a number of enzymes involved in the catabolism of histidine to CO2. 10-Formyltetrahydrofolate dehydrogenase(EC 1.5, 1.6, 10-formyl-THE dehydrogenase) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. In previous studies, 10-formyl-THF dehydrogenase purified from rat and pig liver was coidentified with the cytosolic folate-binding protein. In this study, we investigated the effects of feeding thyroid powder (TP) and thiouracil(TU) on the folate-binding properties of 10-formyl-THE dehydrogenase, the uptake of an injected dose of [3H] folate, and the metabolism of labeled folate to pteroylopoly-${\gamma}$-glutamate in rat liver. The initial hepatic uptake(24hr) of the labeled folate dose was higher in TU-rats and slightly higher in TP-rats in controls. With longer time periods, decreased hepatic uptake of labeled folate was observed in TP-animals compared to euthroid animals, and high levels of hepatic uptake of labeled folate were maintained in TU-animals. This data shows that high levels of thyroid hormone decreased the retention of folate in rat liver. Folate polygutamate chain length was shorter in TU-rats than controls, which suggests that thyroid states do not affect the ability to synthesize pteroylpolyglutamates and that folate polyglutamate might be modulated by altered folate pool size. The ability of 10-formyl-THE dehydrogenase to bind folate in rat liver was similar in both TP-and TU-rats although dehydrogenase activity was changed by thyroid sates.

  • PDF

Pyruvate dehydrogenase phosphatase의 catalytical subunit의 구조와 활성에 대한 연구 (Structural and Functional Relationship of the Catalytical Subunit of Recombinant Pyruvate Dehydrogenase Phosphatase (rPDPc): Limited Proteolysis)

  • Kim, Young-Mi
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권1호
    • /
    • pp.73-80
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP)와 kinase는 당대사시 해당과정에서의 대사 산물인 pyruvate를 acetyl CoA로 만들어 구연산 회로로 진입시켜 주는 효소인 pyruvate dehydrogenase complex (PDC)의 활성을 조절하는 중요한 효소이다. PDP의 catalytic subunit는 PDC의 dihydrolipoamide acetyltransferase (E2), PDP regulatory subunit (PDPr), 그리고 칼슘 결합 도메인 등으로 구성되어 있는 것으로 추측되어지고 있다. 본 연구에서는 그 구조와 기능과의 상관관계를 알아보기 위해 PDPc를 E. coli JM101에서 발현시켜 순수 정제 후 단백분해 효소를 이용한 제한적 가수분해 방법을 이용해 그 구조와 기능과의 상관관계에 대해 연구하고자 하였다 정제된 PDPc는 trypsin, chymotrypsin, Arg-C 그리고 elastase를 이용하여 3$0^{\circ}C$ 그리고 pH 7.0에서 제한적으로 분해시켰으며 각 분해산물의 아미노 말단의 아미노산 배열을 분석하였다. 그 결과 PDPc는 trypsin, chymotrypsin, elastase에 의해 N-terminal의 50 kD과 C-terminal의 10 kD의 두개의 분해산물을 만들었으며, Arg-C에 의해 50kD의 분해산물은 약 35kD와 15kD으로 더 가수분해가 되었다. 이러한 결과로 볼 때 PDPc는 앞에서 추측한데로 세개의 주요한 기능적 도메인으로 이루어져 있음을 알 수 있었다 또한 C-terminal의 10kD은 PDPc의 활성에는 영향을 주지 않는 것으로 밝혀졌으나 다른 도메인의 기능은 더 연구가 되어져야 할 것으로 생각된다.