• Title/Summary/Keyword: Dehydroascorbate reductase

Search Result 31, Processing Time 0.034 seconds

Ozone-induced Alterations in the Activities of Enzymes in Soybean Leaves (대두에서 오존처리에 의한 몇가지 효소의 활성도 변화)

  • Kang, Sang-Jae;Park, Woo-Churl;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 1999
  • This experiment was carried out to investigate the changes of antioxidant enzymes activities in soybean leaves, exposed to 0.2ppm of ozone. We have investigated whether Eunhakong and Samnamkong may scavenge ozone induced activated oxygen species by invoking antioxidant enzymes such as ascorbate peroxidase(APOX), glutathione reductase(GR), monodehydroascorbate reductase(MDHAR), dehydroascorbate reductase(DHAR). Ozone exposure preferentially increased APOX, GR and MDHAR activities, whereas that of DHAR only decreased slowly. When soybean plans were fumigated with 0.2ppm of ozone, the levels of ascorbate and reduced glutathione decreased within a few hours. In eunhakong, which has, slightly a strong tolerance to ozone, was found to have higher antioxidants levels than samnamkong. However, there was no remarkable difference two cultivars in the activities of enzymes which protect plant against active oxygen species.

  • PDF

Effects of Antioxidants on UV-B Susceptibility in Soybean (항산화 물질이 UV-B에 대한 콩의 감수성에 미치는 영향)

  • 김학윤;박이상;이인중;신동현;김길웅
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.633-638
    • /
    • 1998
  • To determine whether the enhanced UV-B causes oxidative stress, and to test the relationship between plant growth response and biochemical defense response to UV-B, two soybean plants, Keunolkong, a highly UV-B susceptible cultivar, and Danyeubkong, a less UV-B susceptible cultivar, were subjected to the enhanced UV-B [daily dose : 0.06 (control) and 11.32 (enhanced UV-B) kJ $m^{-2}$ ; $UV-B_{BE}$] for 3 weeks. Contents of malondialdehyde and total carotenold were increased in Keunolkong compared with Danyeubkong by UV-B. In control plants, ascorbate level of Danyeubkong was 3 times higher than that of Keunolkong. The ratio of dehydroascorbate/ascorbate was highly increased in Keunolkong by UV-B . The activities of antioxidative enzyme such as superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase and glutathione reductase were increased in both cultivars by UV-B. This results indicate that enhanced UV-B caused oxidative stress in both two cultivars, especially in Keunolkong. Susceptibility of two soybean cultivars to UV-B is closely related to the levels of antioxidants such as carotenoid and ascorbate.

  • PDF

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

Physiological Response of Chinese Cabbage to Salt Stress (염 스트레스에 대한 배추의 생리학적 반응)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.343-352
    • /
    • 2010
  • In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

Isolation and Characterization of Methyl Jasmonate -Inducible Genes in Chinese Cabbage

  • Park, Yong-Soon;Cho, Tae-Ju
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.337-343
    • /
    • 2003
  • Methyl jasmonate (MeJA) is a signal molecule in the activation of defense responses in plants. In this study, we isolated 15 MeJA-inducible genes by subtractive hybridization. These genes encode two myrosinase-binding proteins, five lipase-like proteins, a polygalacturonase inhibitor, a putative chlorophyll-associated protein, a terpene synthase, a dehydroascorbate reductase, an ascorbate oxidase, a cysteine protease, an O-methyltransferase, and an epithiospecifier protein. Northern analysis showed that most of the Chinese cabbage genes are barely expressed in healthy leaves, but are strongly induced by MeJA treatment. We also examined whether these MeJA-inducible genes were activated by ethethon, BTH, and Pseudomonas syringae pv. tomato (Pst), a nonhost pathogen of Chinese cabbage. The results showed that none of the MeJA-inducible genes was strongly induced by ethephon or by BTH. The genes encoding lipase-like proteins and a myrosinase-binding protein were weakly induced by Pst. Other MeJA-inducible genes were not activated at all by the pathogen.

Thioltransferase (Glutaredoxin) from Chinese Cabbage: Purification and Properties

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.377-383
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, was purified from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis) by a combination of ion-exchange chromatography and gel filtration. Its purity was confirmed by SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 12,000 which is comparable with those of most known thioltransferases. The enzyme utilizes 2-hydroxyethyl disulfide, S-sulfocysteine, ${\alpha}-chymotrypsin$, insulin, and trypsin as substrates in the presence of reduced glutathione. The enzyme has Km values of 0.03-0.97 mM for these substrates. It appeared to contain dehydroascorbate reductase activity. The pH optimum of the enzyme was 8.5, when 2-hydroxyethyl disulfide was used as a substrate. It was greatly activated by reduced glutathione. Its activity was not significantly lost when stored at high temperature, indicating its thermostable character. It may play an important role in thiol-disulfide exchange in plant cells.

  • PDF

γ-Aminobutyric acid (GABA) confers chromium stress tolerance in mustard (Brassica juncea L.) seedlings by modulating the antioxidant defense and glyoxalase systems

  • Al Mahmud, Jubayer;Hasanuzzaman, Mirza;Nahar, Kamrun;Rahman, Anisur;Hossain, Md. Shahadat;Fujita, Masayuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.235-235
    • /
    • 2017
  • Chromium (Cr) toxicity is hazardous to the seed germination, growth, and development of plants. ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid and is involved in stress tolerance in plants. To investigate the effects of GABA in alleviating Cr toxicity, we treated eight-d-old mustard (Brassica juncea L.) seedlings with Cr (0.15 mM and 0.3 mM $K_2CrO_4$, 5 days) alone and in combination with GABA ($125{\mu}M$) in a semi-hydroponic medium. The roots and shoots of the seedlings accumulated Cr in a dose-dependent manner, which led to an increase in oxidative damage [lipid peroxidation; hydrogen peroxide ($H_2O_2$) content; superoxide ($O{_2}^{{\cdot}-}$) generation; lipoxygenase (LOX) activity], MG content, and disrupted antioxidant defense and glyoxalase systems. Chromium stress also reduced growth, leaf relative water content (RWC), and chlorophyll (chl) content but increased phytochelatin (PC) and proline (Pro) content. Furthermore, supplementing the Cr-treated seedlings with GABA reduced Cr uptake and upregulated the non-enzymatic antioxidants (ascorbate, AsA; glutathione, GSH) and the activities of the enzymatic antioxidants including ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II), and finally reduced oxidative damage. Adding GABA also increased leaf RWC and chl content, decreased Pro and PC content, and restored plant growth. These findings shed light on the effect of GABA in improving the physiological mechanisms of mustard seedlings in response to Cr stress.

  • PDF