• Title/Summary/Keyword: Dehumidifier

Search Result 91, Processing Time 0.029 seconds

Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier (제습기를 이용한 온실 포그냉방시스템의 효율향상)

  • Nam Sang Woon;Kim Kee Sung;Giacomelli Gene A.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

Study on the Performance Characteristics with the Height of a Regenerator and Dehumidifier for Liquid Desiccant Dehumidification System (액체식 제습시스템을 위한 재생기와 제습기의 높이에 따른 성능특성에 관한 연구)

  • 이수동;박문수;정진은;최영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.630-638
    • /
    • 2004
  • Liquid desiccant dehumidification systems have the ability to provide efficient humidity and temperature control while saving the electrical energy requirement for air conditioning as compared to a conventional system. The dehumidifier and the regenerator form the heart of this system. The latent part of the cooling load is overcome using liquid desiccant. The model regenerator has been designed to study the absorption characteristic of the aqueous triethylene glycol (TEG) solution which is in the flow range from 20 to 50 LPM. Also, this system designed that was able to change the height of the regenerator and dehumidifier. Because the effect of performance have different result according the height. The effect of performance factors of the regenerator with inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity have been analyzed. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

Modelling of the Heat and Mass Transfer in a Liquid Desiccant Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기의 열물질 전달 모델링)

  • Chang, Y.S.;Lee, D.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 2011
  • This study presents a new idea of liquid desiccant dehumidifier with extended surface to improve the compactness. Extended surface is inserted between vertical cooling tubes, and the liquid desiccant flows down along the tube walls and the extended surface as well. Though the extended surface contributes to the increase in the mass transfer area, the effect tends to be limited because less conductive non-metallic materials need to be applied due to the high corrosiveness of liquid desiccant. To analyze the effects of the extended surface insertion, mathematical modelling and numerical integration are performed for the heat and mass transfer in the liquid desiccant dehumidifier. The results show that, though the liquid desiccant on the extended surface is heated due to the moisture absorption, the temperature can be maintained by periodic mixing at the contact points between the tube and the extended surface with the liquid desiccant stream from the tube side at a relatively low temperature. This implies the absorption heat from the extended surface side can be removed effectively by mixing, which leads to a substantial improvement of the dehumidification in the liquid desiccant dehumidifier with extended surface. When the interval of the extended surface, $p_e/L$, is less than 0.1, the dehumidification is shown to increase by more than two times compared with that without extended surface.

Analysis of Solar Radiation and Heat-Efficiency in Semi-Greenhouse Type Solar-Dehumidification Lumber Dryer (반온실형(半溫室型) 제습(除濕).태양열(太陽熱) 목재(木材)드라이어의 일사량(日射量)과 열효율분석(熱效率分析)에 관(關)한 연구(硏究))

  • Lee, Hyoung-Woo
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 1989
  • Semi-greenhouse type solar-dehumidification drying of oak was carried out to investigate the possibility to dry wood using solar energy in Korea. The energy balance equation was set up, considering all the energy requirements, and the solar radiation was calculated to analyze the efficiencies of solar dryer with and without the dehumidifier. The average temperature inside dryer and collector rose up to $52^{\circ}C$ and $70^{\circ}C$, respectively. The average daily total beam, diffuse, and ground-reflected radiations were 7.27MJ, 8.70MJ, and 0.33MJ on the roof and 2.08MJ, 4.84MJ, and 5.37MJ on the south wall collector, respectively. Heat efficiency of solar dryer was 14.04% with dehumidifier and 13.13% without dehumidifier. The energy required to remove 1g of water from wood was 0.0289MJ/g in solar-dehumidification drying and 0.0310 MJ/g in semi-greenhouse type solar drying.

  • PDF

Modelling of a Small Domestic Solid Desiccant Dehumidifier (소형 흡착식 제습기의 모델 개발)

  • Kim, Dong-Seon
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.40-48
    • /
    • 2012
  • A small domestic desiccant dehumidifier is modelled using effectiveness models for a desiccant wheel and a wet-air condenser. The desiccant wheel and condenser models are used to compose a system model in the form of a set of simultaneous linear algebraic equations, which is solved by Gauss method. The system model is used to simulate the behaviour of a dehumidifier with a 1kW electric air heater. It is found that the maximu COP is about 0.5 and dehumidification capacity is 18kg/day when the ratio of dehumidification area is 0.7. The optimum wheel thickness and face velocity are found 100mm and 1.5m/s, respectively.

  • PDF

Hybrid Desiccant Dehumidifier for Shipbuilding Painting (하이브리드 데시칸트 선박도장용 제습기)

  • Park, Seung-Tae;Kum, Jong-Soo;Kim, Hue-Jae;Kim, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.248-253
    • /
    • 2009
  • For the energy's effective utilization, the mixed humidifier has been developed and popularized by combining the cooling dehumidifier with the desiccant humidifier properly. This has contributed in many ways to the industry. Hybrid Desiccant Dehumidifier that would be shown in this study could be indispensible in site due to the reduced equipment, with more than 50% reduction in energy.

  • PDF

Theoretical Analysis of a Recuperative Refrigeration Dehumidifier (열회수 냉각 제습기의 이론적 해석)

  • Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.48-54
    • /
    • 2014
  • A refrigeration dehumidifier with a recuperative heat exchanger is theoretically analyzed. The recuperative heat exchanger is located between the two air streams from and to the dehumidifying coil, and reduces the sensible heat load in dehumidification process. A simple model is developed to predict performance of the dehumidifier. The model predicts that the recuperative heat exchanger is effective especially in the low humidity condition, where the sensible heat load is relatively large. It is predicted that, by adopting a recuperative heat exchanger, a maximum 30~110% increase in COP is possible for indoor air at $27^{\circ}C$, and 40~60% relative humidity.

An Experimental Study on the Performance Characteristic with Height of a Fin-Tube Liquid Desiccant Dehumidifier (핀-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Lee, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.25-30
    • /
    • 2003
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristic of working factor variables such as inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity has been analyzed. The result of this experiment can provide useful data for hybrid air conditioning system.

  • PDF

Analysis of Indoor Temperature and Humidity Changes with the Operation of the Condense Drying Dehumidifier (가정용 제습기의 운전에 따른 실내 온습도 변화 분석)

  • Choi, Younhee;Song, Doosam;Sohn, Won-Woo;Lim, Younghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.626-632
    • /
    • 2015
  • The purpose of this paper is to analyze the indoor temperature and humidity changes with the operation of a condense drying humidifier. This paper illustrates the principles and composition of a condense drying dehumidifier, which is broadly used in Korean households. Experiments were conducted repeatedly on rainy days in a test chamber. The results showed that the indoor RH was lowered to 40% within 2 hours while the indoor temperature was increased by approximately $4.3^{\circ}C$ with the operation of the humidifier.

A Study on Performance Characteristics of a Dehumidifier with Multi-layer Type Heat Exchangers Varying Frontal Air Velocity (다층형 열교환기를 이용한 제습기의 전면 풍속 변화에 따른 성능 특성에 관한 연구)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2323-2327
    • /
    • 2010
  • The experimental apparatus consists of dehumidifier with multi-layer type heat exchangers to remove the moisture from automatic equipments, semiconductors, and manufacturing processes under the low temperature environment, and chemical production lines which are likely to take moisture. The major components of this system are four evaporators with different fin pitch, two compressors, two condensers and an expansion valve. In this study, the performance characteristics of dehumidifier is analyzed by the variations of frontal air velocity in the first heat exchanger(evaporator). The cooling capacity of each heat exchanger is acquired by the enthalpy calculating from measuring point of temperature and relative humidity of the first heat exchanger from 1.0m/s to 4.0m/s with increasing interval 0.5m/s, and the front air velocity. As a result, it is found that cooling capacity of the first heat exchanger showed the best cooling capacity when its frontal air velocity is 2.0 m/s.