• Title/Summary/Keyword: Dehumidification rotor

Search Result 18, Processing Time 0.031 seconds

An Experimental Study of the Effect of Regeneration Area Ratio on the Performance of Small-Sized Dehumidification Rotor for Residential Usage (재생 면적비가 가정용 소형 제습로터의 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.277-282
    • /
    • 2015
  • During hot and humid weather, air-conditioners consume a large amount of electricity due to the large amount of latent heat. Simultaneous usage of a dehumidifier may reduce latent heat and reduce electricity consumption. In this study, dehumidification performance was measured for a small-sized dehumidification rotor made of inorganic fiber impregnated with metallic silicate within a constant temperature and humidity chamber. Regeneration to dehumidification depends on ratio, rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results demonstrate an optimum area ratio (1/2), rotor speed (1.0 rpm), and regeneration temperature ($100^{\circ}C$) to achieve a dehumidification rate of 0.0581 kg/s. As the area ratio increases, the optimum rotation speed and the optimum regeneration temperature also increase. Above the optimum rotor speed, incomplete regeneration reduces dehumidification. Above the optimum regeneration temperature, increased temperature variation between regeneration and dehumidification reduces dehumidification. Dehumidification rate also increases with an increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

An Experimental Study on the Dehumidification Characteristics and the Effectiveness for Operating Conditions of a Desiccant Rotor (운전조건에 따른 제습로터의 제습특성과 유용도에 관한 실험적 연구)

  • Kang, Byung-Ha;Lee, Jin-Joo;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • An experimental study has been carried out to investigate the dehumidification characteristics for several operating conditions of a compact desiccant rotor. This problem is of particular interest in the design of a desiccant type of dehumidifier. Room temperature, room humidity, regeneration temperature, revolution speed and frontal air velocity of desiccant rotor are varied as operating conditions. The results obtained indicate that dehumidification rate is increased with an increase in the room humidity while dehumidification effectiveness is not changed much. It is also found that the optimal rotor speed and optimal regeneration temperature exist for maximum dehumidification rate and dehumidification effectiveness.

A Proposal for New Definition of Performance Indices of a Desiccant Rotor (제습로터 성능지료 제안)

  • Lee, Dea-Young;Lee, Gil-Bong;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.537-544
    • /
    • 2007
  • To facilitate comparative analysis on the effects of numerous parameters concerning design and operation of a desiccant rotor, it is firstly required to represent the dehumidification performance as numerical indices. In this work is proposed two performance indices of a desiccant rotor: the humidity effectiveness and the enthalpy-leak ratio. The humidity effectiveness represents the actual dehumidification as compared with the dehumidification in an ideal case, while the enthalpy-leak ratio represents the enthalpy transfer from the regeneration side to the dehumidification side. In an ideal case, the two indices approach one and zero, respectively. The effects of numerous parameters on the dehumidification performance of a desiccant rotor are investigated through numerical simulation and represented with the two indices. The results show that the performance indices are mainly determined by three nondimensional parameters each representing the thermal capacity, the sorption capacity, and the transfer capacity of a desiccant rotor.

Experimental Investigation on the Performance of Small-Sized Dehumidification Rotor for Residential Use (가정용 소형 제습로터의 성능에 대한 실험적 연구)

  • Han, Ji-Chao;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2344-2349
    • /
    • 2015
  • In Korea, summer is hot and humid, and air-conditioners consume too much electricity due to large amount of latent heat. Simultaneous usage of dehumidifier may reduce the latent heat and save the electricity. In this study, dehumidification performance was measured in a constant temperature and humidity chamber for a small-sized dehumdification rotor made of inorganic fiber impregnated with metallic silicate. Variables were rotor speed, room temperature, regeneration temperature, room relative humidity and frontal velocity to the rotor. Results showed that there existed optimum rotor speed (1.0 rpm), and optimum regeneration temperature ($100^{\circ}C$). Above the optimum rotor speed, incomplete regeneration is responsible for reduced dehumidification. Above the optimum regeneration temperature, increased temperature difference between regeneration and dehumidification process is responsible for reduced dehumidification. The amount of dehumidification also increases with the increase of relative humidity, dehumidification temperature and flow velocity into the rotor.

Derivation and Analysis of Dimensionless Parameters Dominating the Dehumidification Characteristics of a Desiccant Rotor (제습로터의 운전특성을 재배하는 무차원 인자의 도출과 해석)

  • Lee Gilbong;Kim Min Soo;Lee Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.611-619
    • /
    • 2005
  • In a previous work of the authors, the heat and mass transfer in a desiccant rotor was analyzed theoretically through linearization assumptions and four dimensionless parameter groups dominating the dehumidification process were arranged. In this work is verified whether the four dimensionless parameters also play the dominant roles in more realistic situations where the nonlinear factors affect the heat and mass transfer. The results show that the dehumidification characteristics are closely similar to each other as long as the four dimensionless parameters have the same set of values while the rotor configurations and/or the operation conditions are different from each other. The four dimensionless parameters are $\Psi,\;\chi,\;\sigma$ and N, where $\Psi$ implies the average gradient of relative humidity lines in the psychrometric chart, $\chi$ the heat capacity of the rotor and $\sigma$ the sorption capacity of the rotor, and N implies the number of transfer unit.

Optimization of the Area Ratio of Regeneration to Dehumidification and Rotor Speed on the Condition of Low Regeneration Temperature (재생온도가 저온인 경우 제습로터의 재생부/제습부 면적비율과 회전속도 최적화)

  • Chung, Jae-Dong;Lee, Dae-Young;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.521-528
    • /
    • 2007
  • The desiccant rotor is the most essential component of desiccant cooling system, but its design relies on manufacturer's experience and principles are not yet clear in spite of a lot of theoretical/experimental work published. The mathematical modeling of desiccant rotor needs solution of coupled partial differential equations of heat and mass transfer. In this study, numerical program is developed and validated using a real desiccant rotor. The calculation results are in reasonable agreement with the experimental data and other available numerical results. Optimization of desiccant rotor on the condition of low regeneration temperature are investigated. The optimal rotor speed at which the process outlet humidity becomes minimized, shows same as that of the system optimization. Compared to high regeneration temperature, broad is the range of optimal speed of low regeneration temperature. Systematic analysis on the optimal area ratio of regeneration to dehumidification section has also been conducted.

A Study on the Rotary Absorptive Dehumidifer (회전형 흡수식 제습기에 관한 연구)

  • Kim, Young-Il;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

Effect of Desiccant and Channel Geometries on the Performance of Desiccant Rotor (제습제와 채널이 제습로터 성능에 미치는 영향)

  • Chung, Jae-Dong;Lee, Dae-Young;Yoon, Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.569-576
    • /
    • 2007
  • The desiccant rotor is the most essential component of desiccant cooling system, but one of its drawbacks to spread out is rotor size. To reduce the size of rotor the analysis of rotor performance is crucial. Systematic examination on the effect of desiccant and channel geometries has been conducted based on the numerical program previously developed. Considered parameters related to channel geometries are channel shape and cross section area of channel, and parameters related to desiccant are mass fraction, heat capacity, density, maximum water uptake and separation factor of isotherm. Considerable reduction of rotor size is expected by adjusting the parameters.

Theoretical Determination of Optimum Rotating Speed of Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.603-608
    • /
    • 2008
  • A simple equation to find a optimum speed of desiccant rotor is presented in this theoretical study. Usually the determination of optimum speed of desiccant rotor requires tedious and lengthy procedures by solving governing differential equations with many complicated parameters. The determining equation of optimal rotating speed is derivated from governing differential equations with three linearization assumptions, which simplify temperature profile linear along the desiccant rotor depth, psychrometric chart within a proper range, and relative humidity-sorption capacity relation. This study shows that the dominant parameters of optimal rotating speed of desiccant rotor are NTU, flow velocity, desiccant rotor depth, and temperature different between dehumidification and regeneration. The comparison shows the good agreement between complicated calculation results and simple theoretical equation prediction.

  • PDF