• 제목/요약/키워드: Dehazing

검색결과 59건 처리시간 0.028초

근적외선 영상의 특성을 활용한 안개 제거 알고리즘 (Image Dehazing Algorithm Using Near-infrared Image Characteristics)

  • 유제택;나성웅;이성민;정승원
    • 전자공학회논문지
    • /
    • 제52권11호
    • /
    • pp.115-123
    • /
    • 2015
  • 적외선 영상은 외광의 밝기에 영향을 적게 받아서 원격 탐사 및 영상 보안 등의 응용에서 활발하게 활용되고 있다. 그러나 안개와 같은 기상 악화상황으로 인하여 해당 적외선 영상의 화질이 크게 저하되는 경우가 빈번하게 발생한다. 칼라 영상의 안개제거 기술이 다양하게 연구되어온 반면 적외선 영상의 안개제거 기술은 상대적으로 관심을 받지 못하고 있다. 본 논문에서는 근적외선 대역 영상에 대하여 적외선 영상의 통계학적 특징을 이용한 안개 제거 알고리즘을 제안한다. 기계학습 기법을 활용하여 전달량을 보정하고 다중 후처리 기법을 적용하여 정확한 전달량을 구하였다. 제안 기술을 이용하여 복원한 적외선 영상이 기존 칼라영상에 기반한 알고리즘을 적외선 영상에 적용하여 얻은 결과보다 화질이 좋다는 것을 확인하였다.

근적외선(NIR) 영상의 특성 분석 및 안개제거 (Analysis and dehazing of near-infrared images)

  • 유제택;나성웅
    • 한국항공우주학회지
    • /
    • 제44권1호
    • /
    • pp.33-39
    • /
    • 2016
  • 칼라 영상의 안개제거 기술이 다양하게 연구되어 왔으며 이 중 칼라 안개 영상의 특성을 토대로 도출한 Dark Channel Prior(DCP) 모델을 이용한 방법이 가장 활발하게 이용되고 있다. 한편 근적외선 영상을 이용한 응용이 널리 사용되고 있으며 근적외선 영상에 존재하는 안개를 제거할 필요가 있음에도 불구하고 기존에 근적외선 영상을 대상으로 하는 안개 제거 기술이 제안되지 않았다. 본 논문에서는 칼라 영상과 근적외선 영상을 안개 제거 측면에서 비교 분석을 수행하며 적외선 영상에 기존의 칼라 안개 제거 알고리즘 기법을 적용했을 때 나타나는 결과를 분석한다. 또한 근적외선 영상에서의 특징에 맞게 기존 칼라 안개 제거 기법을 수정한 기법을 제안하고 그 결과를 분석한다.

Luminance enhancement in single image dehazing

  • ;김원하
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.322-324
    • /
    • 2013
  • Haze is an extreme reason of the reduction of contrast when capturing image in the outdoor. Recently, there are several single image dehazing techniques, but they are not robust in dynamic variations of natural environment caused by the thickness, coverage of haze and appearance of sunlight. In this paper, we propose an effective and robust method to enhance luminance for image dehazing depending on histogram analysis. Compare with conventional methods, our proposal have better performance in term of contrast, and computation time.

  • PDF

Histogram-based luminance enhancement for image dehazing

  • Bui, Minh-Trung;Kim, Won-Ha
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.16-18
    • /
    • 2012
  • Haze is an extreme reason of the reduction of contrast when capturing image in the outdoor. Recently, there are several single image dehazing techniques, but they are not robust in dynamic variations of natural environment caused by the thickness, coverage of haze and appearance of sunlight. In this paper, we propose an effective and robust method to enhance luminance for image dehazing depending on histogram analysis. Compare with conventional methods, our proposal have better performance in term of contrast, and computation time.

  • PDF

segmenting dark channel prior을 이용한 단일 영상에서의 안개 제거 (Single image dehazing using segmenting dark channel prior)

  • ;;김원하
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 추계학술대회
    • /
    • pp.127-129
    • /
    • 2014
  • In image dehazing, the existing transmission estimators bring out the halo artifact at boundaries unless they adopt a refinement process with the high computational complexity. We analyze how the existing transmission estimation methods suffer from the halo artifact at the boundaries and observed that the elaborate, high computational refinement processes to remove the halo effect are excessive for dehazing. On the basis of the analysis and observation, we embed a simple segmentation logic in an existing transmission estimator, which is sufficiently accurate for dehazing. The experiment verifies that the proposed method significantly reduces the halo artifact without requiring any refinement process.

  • PDF

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.

Single image dehazing by segmenting dark channel prior

  • ;김원하
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.172-175
    • /
    • 2016
  • In image dehazing, the existing transmission estimators bring out the halo artifact at boundaries unless they adopt a refinement process with the high computational complexity. We analyze how the existing transmission estimation methods suffer from the halo artifact at the boundaries and observed that the elaborate, high computational refinement processes to remove the halo effect are excessive for dehazing. On the basis of the analysis and observation, we embed a simple segmentation logic in an existing transmission estimator, which is sufficiently accurate for dehazing. The experiment verifies that the proposed method significantly reduces the halo artifact without requiring any refinement process.

  • PDF

채도의 선형 변환을 이용한 단일 영상 안개 제거 (Single Image Dehazing Using Linear Transformation of Saturation)

  • 박태희
    • 대한임베디드공학회논문지
    • /
    • 제14권4호
    • /
    • pp.197-205
    • /
    • 2019
  • In this paper, an efficient single dehazing algorithm is proposed based on linear transformation by assuming that a linear relationship exists in saturation component between the haze image and haze-free image. First, we analyze the linearity of saturation channel, estimate the medium transmission map in terms of the saturation component. Then, the intensity of haze-free image is assumed by using CLAHE to enhance contrast of haze image. Experimental results demonstrate that proposed algorithm can naturally recover the image, especially can remove color distortion caused by conventional methods. Therefore, our approach is competitive with other state-of-the art single dehazing methods.

Single Image Dehazing: An Analysis on Generative Adversarial Network

  • Amina Khatun;Mohammad Reduanul Haque;Rabeya Basri;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.136-142
    • /
    • 2024
  • Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.

Single-Image Dehazing based on Scene Brightness for Perspective Preservation

  • Young-Su Chung;Nam-Ho Kim
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.70-79
    • /
    • 2024
  • Bad weather conditions such as haze lead to a significant lack of visibility in images, which can affect the functioning and reliability of image processing systems. Accordingly, various single-image dehazing (SID) methods have recently been proposed. Existing SID methods have introduced effective visibility improvement algorithms, but they do not reflect the image's perspective, and thus have limitations that distort the sky area and nearby objects. This study proposes a new SID method that reflects the sense of space by defining the correlation between image brightness and haze. The proposed method defines the haze intensity by calculating the airlight brightness deviation and sets the weight factor of the depth map by classifying images based on the defined haze intensity into images with a large sense of space, images with high intensity, and general images. Consequently, it emphasizes the contrast of nearby images where haze is present and naturally smooths the sky region to preserve the image's perspective.