• Title/Summary/Keyword: Degree of hardening

Search Result 104, Processing Time 0.028 seconds

Effect of microstructure on mechanical properties in dual phase steel (복합조직강의 기계적 특성에 미치는 미시조직인자의 영향)

  • 김정규;유승원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-84
    • /
    • 1987
  • A study has been made to clarify the microstructural effect on static tensile properties of the dual phase steel, in which the martensitic phase encapsulated islands of ferritic phase. The main results are as follows: Yield strength is associated with the degree of plastic constraint factor and tensile strength increases with increasing of strain hardening exponent. Also, the variation of ductility is dependent upon the amount of micro-brittle facets.

  • PDF

Viscoplastic analysis of thin-walled tubes under cyclic bending

  • Pan, Wen-Fung;Hsu, Chien-Min
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.457-471
    • /
    • 1999
  • In this paper, different curvature-rates are controlled to highlight the characteristic of viscoplastic response in cyclic bending tests. The curvature-ovalization apparatus, which was designed by Pan et al. (1998), is used for conducting the curvature-controlled experiments on thin-walled tubular specimens for AISI 304 stainless steel under cyclic bending. The results reveals that the faster the curvature-rate implies, the fast degree of hardening of the metal tube. However, the ovalization of the tube cross-section increases when the curvature-rate increases.

Development of Biopsy Assist Device on Computed Tomography Using 3D Printing Technology (3D 프린팅 기술을 이용한 전산화단층영상 기반 조직 생검 보조기구 개발)

  • Jeong-Wan Kim;Youl-Hun Seoung
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.151-157
    • /
    • 2023
  • The purpose of this study was to develop an assist device that could correct and support patient position during biopsy on computed tomography (CT) using 3D printing technology. The development method was conducted in the order of 3D design, 3D output, intermediate evaluation for product, final assist device evaluation. The 3D design method was conducted in the order of prior research data survey, measurement, primary modeling, 3D printing, output evaluation, and supplementary modeling. The 3D output was the 3D printer (3DWOX 2X, Sindoh, Korea) with additive manufacturing technology and the polylactic acid (PLA) materials. At this time, the optimal strength was evaluated to infill degree of product as the 3D printing factors into 20%, 40%, 60%, and 80%. The intermediate evaluation and supplementation was measured noise in the region of interest (ROI) around the beam hardening artifact on the CT images. We used 128-channel MDCT (Discovery 75 HD, GE, USA) to scan with a slice thickness of 100 kVp, 150 mA, and 2.5 mm on the 3D printing product. We compared the surrounding noise of the final 3D printing product with the beginning of it. and then the strength of it according to the degree of infill was evaluated. As a result, the surrounding noise of the final and the early devices were measured at an average of 3.3 ± 0.5 HU and 7.1 ± 0.1 HU, respectively, which significantly reduced the noise of the final 3D printing product (p<0.001). We found that the percentage of infill according to the optimal strength was found to be 60%. Finally, development of assist devices for CT biopsy will be able to minimize artifacts and provide convenience to medical staff and patients.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Effect of Surface Preparation and Curing Condition on the Interfacial Bond Strength between Ultra High Performance Concrete and Normal Strength Concrete (표면처리 및 양생 조건이 초고성능 콘크리트-보통 콘크리트 계면 부착강도에 미치는 영향)

  • Kang, Sung-Hoon;Hong, Sung-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.149-160
    • /
    • 2015
  • This study reports the interfacial bond strength between Ultra High Performance Concrete (UHPC) and Normal Strength Concrete (NSC). While previous studies have focused on the interfacial strength between NSC substrate and UHPC overlay, this study use precast UHPC for enhanced constructability and replacement of formwork. The factors affecting the interface strength are comprehensively reviewed. It can be classified into: interface shape, degree of hardening and moisture condition of UHPC before combining with NSC, and curing condition of composite materials. Conducted experiments verify the effects of each factor on the interface strength and, accordingly show different failure modes. In particular, a new failure mode of the failure of a part of UHPC was firstly found in the case of sample with rough interface between UHPC and NSC. The other factors of the degree of hardening and the moisture and curing conditions of UHPC were discussed. This research will provide a valuable foundation to utilize the UHPC as a composite material.

Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator (화력발전소 바텀애쉬와 수산화나트륨 활성화제를 이용해 제작한 지오폴리머의 압축강도 특성)

  • An, Eung-Mo;Cho, Sung-Baek;Lee, Su-Jeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at $60^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.

Study on Erosion Characteristics of Aged HK40 Steel (열화된 HK40강의 마식특성에 관한 연구)

  • Kim, Am-Kee;Chun, Yong-Du;Lee, Kum-Bae;Kim, Chang-Hoon;Nahm, Seung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.403-408
    • /
    • 2003
  • The erosion behavior of :artificially aged HK40 steel was investigated. Erosion tests were conducted at room temperature, $200^{\circ}C$ and $400^{\circ}C$ using $Al_2O_3$ particles. Erosion rates increased with increment of temperature. The maximum erosion rate increased with the impingement angle of 30 degree. The erosion rate increased, reached the maximum at 1000 hours, and after that, decreased with heat treatment time. The mechanism of erosion seems to be the cutting wear which is very much associated with the strength of material. As results, the erosion rates were rather affected by the tensile strength and the strain hardening coefficient than the hardness and the yield strength. Such changes of material properties would be caused by the change of micro-structure due to the precipitation of carbide and the dissolution of solid element within matrix during the heat treatment.

  • PDF

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

Viscoplastic collapse of titanium alloy tubes under cyclic bending

  • Lee, Kuo-Long;Pan, Wen-Fung
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.315-324
    • /
    • 2001
  • This paper presents the experimetal result on the viscoplastic response and collapse of the titanium alloy tubes subjected to cyclic bending. Based on the capacity of the bending machine, three different curvature-rates were used to highlight the viscoplastic behavior of the titanium alloy tubes. The Curvature-controlled experiments were conducted by the curvature-ovalization measurement apparatus which was designed by Pan et al. (1998). It can be observed from experimental data that the higher the applied curvature-rate, the greater is the degree of hardening of titanium alloy tube. However, the higher the applied curvature-rate, the greater is the degree of ovalization of tube cross-section. Furthermore, due to the greater degree of the ovalization of tube cross-section for higher curvature-rates under cyclic bending, the number of cycles to produce buckling is correspondingly reduced. Finally, the theoretical formulation, proposed by Pan and Her (1998), was modified so that it can be used for simulating the relationship between the controlled curvature and the number of cycles to produce buckling for titanium alloy tubes under cyclic bending with different curvature-rates. The theoretical simulation was compared with the experimental test data. Good agreement between the experimental and theoretical results has been achieved.

Investigation on Techniques for Evaluating Hardiness to Low Temperature in Cereals (화곡류의 내한성 검정기술에 관한 연구)

  • Chae-Yun Cho;J. D. Hayes
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.97-109
    • /
    • 1973
  • 1. The relatively lower prehardening temperature was more effective on increase of the hardiness of the intermediately hardy varieties than the higher one but either the extremely hardy or nonhardy varieties did not respond to the temperature as much as the intermediate types. 2. Five degree Centigrade was generally more favorable than $2^{\circ}C$ on hardening of the plants, especially when frozen at higher temperature for shorter duration. 3. It appears that photoperiod during prehardening and hardening did not play so important role as temperature on the hardiness. 4. The higher the soil moisture content, the higher the frost injury occurred. 5. Application of nitrogen increased markedly the hardiness and % DM of the plants. Percentage of dry matter of young seedlings might be used as an easy and rough criterion for evaluating hardiness since there was a highly significant regression of varietal frost injury on the %DM. 6. Four days appeared to be enough for hardening of plants although the plants increased gradually the hardiness as duration of hardening extended. Dehardening of the plants at relativity higher temperature took place rapidly within one to four days. 7. Under this controlled environment, freezing at about $-8^{\circ}C$ for 24 hours seemed the best for the purpose of evaluating the hardiness to low temperature. 8. It is believed that assessment of frost injury should be done at least one week after freezing. Some varieties showed strong ability to recover from the damage as recovery period was extended. 9. As a whole, Cd 80 and 83 were the most hardy and followed by Cappelle and Maris Otter. Four. winter oats varieties and Jufy I belonged to the intermediate type while the other three spring varieties were nonhardy at all. Peniarth was comparable with Maris Otter in hardiness. S 147 appeared the least hardy among the winter oats varieties. 10. It is evident that water-soluble carbohydrate content is associated with the hardiness to some extent but not primary factor involved in hardiness.

  • PDF