• Title/Summary/Keyword: Degree of acceleration

Search Result 293, Processing Time 0.023 seconds

Effect of PSD Function on Linear Response and Inelastic Response of Single Degree of Freedom System (단자유도 시스템의 선형응답과 비탄성응답에 미치는 PSD함수의 영향)

  • Choi, Dong-Ho;Lee, Sang-Hoon;Kim, Yong-Sik;Koh, Jung-Hoon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.257-259
    • /
    • 2008
  • Acceleration time history (ATH) used in the seismic analysis should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. Even though design regulations require the ATH used in seismic analysis to meet a target PSD function, the reason that ATHs meet to a target PSD function is not described. Thus, artificial ATHs for high PSD function and artificial ATHs for low PSD function are generated. And then elastic and inelastic single-degree-of-freedom (SDOF) systems are loaded with these artificial time histories as the earthquake load. As a result, linear response and inelastic response of SDOF systems are affected by PSD function.

  • PDF

Estimating floor spectra in multiple degree of freedom systems

  • Calvi, Paolo M.;Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.17-38
    • /
    • 2014
  • As the desire for high performance buildings increases, it is increasingly evident that engineers require reliable methods for the estimation of seismic demands on both structural and non-structural components. To this extent, improved tools for the prediction of floor spectra would assist in the assessment of acceleration sensitive non-structural and secondary components. Recently, a new procedure was successfully developed and tested for the simplified construction of floor spectra, at various levels of elastic damping, atop single-degree-of-freedom structures. This paper extends the methodology to multi-degree-of-freedom (MDOF) supporting systems responding in the elastic range, proposing a simplified modal combination approach for floor spectra over upper storeys and accounting for the limited filtering of the ground motion input that occurs over lower storeys. The procedure is tested numerically by comparing predictions with floor spectra obtained from time-history analyses of RC wall structures of 2- to 20-storeys in height. Results demonstrate that the method performs well for MDOF systems responding in the elastic range. Future research should further develop the approach to permit the prediction of floor spectra in MDOF systems that respond in the inelastic range.

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

A Study on the Vibration Behavior of Building Structures due to Undergroud Blasting (지중발파에 의한 건물의 진동 거동에 관한 연구)

  • 조병윤;문형구
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1996
  • In order to analyze the effects of ground vibration caused by underground blasting having an effect on structure, the particle velocity and acceleration are calculated by using DYNPAK program. The DYNPAK program analyzes nonlinear transient dynamic problem and adopts the very popular and easily implemented, explicit, central difference scheme. In this program, the material behavior is assumed to be elasto-viscoplastic. Using the particle acceleration history, modal analysis method is applied to the forced vibration response of multiple-degree-of-freedom(MDOF) systems using unclupled equations of motion expressed in terms of the system's natural circular frequencies and modal damping factors. AS a means of evaluating the vibration behavior of building structure subjected to underground blasting, the time response of the displacements relative to the ground of five-story building is determined. It is concluded that the amount of explosives consumed per round, the location of structure, the properties of rock medium, the stiffness fo structure, etc. act on the important factors influencing on the safety of building and that the response of a structure subjected to a forced excitation can usually be obtained with reasonable accuracy by the modal analysis of only a few mode of the lower frequencies of the system.

  • PDF

Effects of friction variability on a rolling-damper-spring isolation system

  • Wei, Biao;Wang, Peng;He, Xuhui;Zhang, Zhen;Chen, Liang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.551-559
    • /
    • 2017
  • A large number of isolation systems are designed without considering the non-uniform friction distribution in space. In order to analyze the effects of non-uniform friction distribution on the structural response of isolation system, this paper presented a simplified rolling-damper-spring isolation system and analyzed the structural responses under earthquakes. The numerical results indicate that the calculation errors related to the peak values of structural acceleration, relative displacement and residual displacement are sequentially growing because of the ignorance of non-uniform friction distribution. However, the influence rule may be weakened by the spring and damper actions, and the unreasonable spring constant may lead to the sympathetic vibration of isolation system. In the case when the friction variability is large and the damper action is little, the non-uniform friction distribution should be taken into consideration during the calculation process of the peak values of structural acceleration and relative displacement. The non-uniform friction distribution should be taken into full consideration regardless of friction variability degree in calculating the residual displacement of isolation system.

Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves (비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

Development of Reliability Design Methodology Using Accelerated Life Testing and Taguchi Method (가속 수명시험과 다구치 방법을 활용한 신뢰성설계 방법의 개발)

  • Kim, Min;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.407-414
    • /
    • 2002
  • The inherent reliability of a product is primarily determined in the design stage, and therefore, design engineers should be able to design reliability into the product in an efficient manner. Especially, the product should be designed such that its reliability is robust to various noise factors encountered in production and field environments. The Taguchi method can be effectively used for this purpose. However, there exist only a few attempts to integrate the Taguchi method with reliability design, and in addition, the existing works do not sufficiently consider the robustness and/or the distinction between noise and acceleration factors. This paper develops a unified approach to robust reliability design assuming that accelerated life tests are conducted at each combination of design and noise conditions. First, an experimental structure for assigning not only acceleration but also noise factors is presented. Second, the reliability at the use condition is estimated using the assumed accelerated life test model. Third, reliabilities are transformed into 'efforts' using an effort function which reflects the degree of difficulty involved in improving the reliability. Finally, an optimal setting of design parameters is determined based on the mean and standard deviation of the effort values. The above approach is illustrated with an example of a paper feeder design.

Force Identification of a Rotary Compressor and Prediction of Vibration on a Pipe (공조용 압축기의 가진력 규명 및 배관 진동 예측)

  • Lee, Han-Wool;Ryu, Sang-Mo;Jeong, Weui-Bong;Han, Hyung-Suk;Ahn, Jae-Woo;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.953-959
    • /
    • 2010
  • This paper deals with the process to identify the exciting forces generated from a rotary compressor. The equation of motion of a rigid compressor supported by several mounts was derived with 6 degree of freedom. The mass moment of inertia of compressor and the stiffness of rubber mounts were also identified by experiments. The exciting force at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. The piping system connected to the compressor was modeled. The acceleration of a pipe was predicted numerically by using the predicted exciting force. The numerical results showed good agreement with experimental results, which validated the identified exciting force.

Vehicle Longitudinal Velocity Estimation on Inclined Road (경사진 노면에서의 차량의 종 속도 추정)

  • Lee, Sang-Yeob;Kim, In-Keun;Lee, Dong-Hun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • On-line and real-time information of the longitudinal velocity is the essential factor for the Advanced Vehicle Control Systems such as ABS(Anti-lock Brake System), TCS(Traction Control System), ESC (Electronic Stability Control) etc. However, the longitudinal velocity cannot be easily measured or calculated during braking maneuvering. A new algorithm is presented for the estimation of the longitudinal velocity with the measurements of the vehicle longitudinal/lateral acceleration, steering angle and yaw rate. The algorithm is designed utilizing the Extended Kalman Filter based on the 3 degree of freedom vehicle model. In order to compensate for the biased sensor signal on the inclined road, the inclined angle is also estimated. The performance of the proposed estimation algorithm is evaluated in field tests.

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.