Browse > Article
http://dx.doi.org/10.12989/eas.2017.13.6.551

Effects of friction variability on a rolling-damper-spring isolation system  

Wei, Biao (School of Civil Engineering, Central South University)
Wang, Peng (School of Civil Engineering, Central South University)
He, Xuhui (School of Civil Engineering, Central South University)
Zhang, Zhen (School of Civil Engineering, Central South University)
Chen, Liang (School of Civil Engineering, Hefei University of Technology)
Publication Information
Earthquakes and Structures / v.13, no.6, 2017 , pp. 551-559 More about this Journal
Abstract
A large number of isolation systems are designed without considering the non-uniform friction distribution in space. In order to analyze the effects of non-uniform friction distribution on the structural response of isolation system, this paper presented a simplified rolling-damper-spring isolation system and analyzed the structural responses under earthquakes. The numerical results indicate that the calculation errors related to the peak values of structural acceleration, relative displacement and residual displacement are sequentially growing because of the ignorance of non-uniform friction distribution. However, the influence rule may be weakened by the spring and damper actions, and the unreasonable spring constant may lead to the sympathetic vibration of isolation system. In the case when the friction variability is large and the damper action is little, the non-uniform friction distribution should be taken into consideration during the calculation process of the peak values of structural acceleration and relative displacement. The non-uniform friction distribution should be taken into full consideration regardless of friction variability degree in calculating the residual displacement of isolation system.
Keywords
seismic isolation; friction variability; rolling friction; spring; viscous damper;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Begley, C.J. and Virgin, L.N. (1998), "Impact response and the influence of friction", J. Sound Vib., 211(5), 801-818.   DOI
2 Chung, L.L., Kao, P.S., Yang, C.Y., Wu, L.Y. and Chen, H.M. (2015), "Optimal frictional coefficient of structural isolation system", J. Vib. Control, 21(3), 525-538.   DOI
3 Cui, S. (2012), Integrated Design Methodology for Isolated Floor Systems in Single-Degree-of-Freedom Structural Fuse Systems, State University of New York, Buffalo.
4 Fahjan, Y. and Ozdemir, Z. (2008), "Scaling of earthquake accelerograms for non-linear dynamic analysis to match the earthquake design spectra", The 14th World Conference on Earthquake Engineering, Chinese Society for Earthquake Engineering, Beijing, China.
5 Flom, D.G. and Bueche, A.M. (1959), "Theory of rolling friction for spheres", J. Appl. Phys., 30(11), 1725-1730.   DOI
6 Guerreiro, L., Azevedo, J. and Muhr, A.H. (2007), "Seismic tests and numerical modeling of a rolling-ball isolation system", J. Earthq. Eng., 11(1), 49-66.   DOI
7 Harvey, P.S. and Gavin, H.P. (2013), "The nonholonomic and chaotic nature of a rolling isolation system", J. Sound Vib., 332(14), 3535-3551.   DOI
8 Harvey, P.S. and Gavin, H.P. (2014), "Double rolling isolation systems: a mathematical model and experimental validation", Int. J. Nonlin. Mech., 61(1), 80-92.   DOI
9 Harvey, P.S. and Gavin, H.P. (2015), "Assessment of a rolling isolation system using reduced order structural models", Eng. Struct., 99, 708-725.   DOI
10 Antonyuk, E.Y. and Plakhtienko, N.P. (2004), "Dynamic modes of one seismic-damping mechanism with frictiona bonds", Int. Appl. Mech., 40(6), 702-708.   DOI
11 Ismail, M. and Casas, J.R. (2014), "Novel isolation device for protection of cable-stayed bridges against near-fault earthquakes", J. Bridge Eng., 19(8), 50-65.
12 Harvey, P.S., Wiebe, R. and Gavin, H.P. (2013), "On the chaotic response of a nonlinear rolling isolation system", Physica D: Nonlin. Phenomena, 256-257, 36-42.   DOI
13 Harvey, P.S., Zehil, G.P. and Gavin, H.P. (2014), "Experimental validation of a simplified model for rolling isolation systems", Earthq. Eng. Struct. Dyn., 43(7), 1067-1088.   DOI
14 Ismail, M. (2015), "An isolation system for limited seismic gaps in near-fault zones", Earthq. Eng. Struct. Dyn., 44(7), 1115-1137.   DOI
15 Jangid, R.S. and Londhe, Y.B. (1998), "Effectiveness of elliptical rolling rods for base isolation", J. Struct. Eng., 124(4), 469-472.   DOI
16 Ismail, M., Rodellar, J. and Pozo, F. (2014), "An isolation device for near-fault ground motions", Struct. Control Hlth. Monit., 21(3), 249-268.   DOI
17 Ismail, M., Rodellar, J. and Pozo, F. (2015), "Passive and hybrid mitigation of potential near-fault inner pounding of a self-braking seismic isolator", Soil Dyn. Earthq. Eng., 69(2), 233-250.   DOI
18 Jangid, R.S. (2000), "Stochastic seismic response of structures isolated by rolling rods", Eng. Struct., 22(8), 937-946.   DOI
19 Jiang, C.W., Wei, B., Wang, D.B., Jiang, L.Z. and He, X.H. (2017), "Seismic vulnerability evaluation of a three-span continuous beam railway bridge", Math. Prob. Eng., 4, 1-13.
20 JTJ004-89, Standard of the Ministry of Communications of P.R. China (1989), Specifications of Earthquake Resistant Design for Highway Engineering, China Communications Press, Beijing (in Chinese).
21 Ortiz, N.A., Magluta, C. and Roitman, N. (2015), "Numerical and experimental studies of a building with roller seismic isolation bearings", Struct. Eng. Mech., 54(3), 475-489.   DOI
22 Kosntantinidis, D. and Makris, N. (2009), "Experimental and analytical studies on the response of freestanding laboratory equipment to earthquake shaking", Earthq. Eng. Struct. Dyn., 38(6), 827-848.   DOI
23 Kurita, K., Aoki, S., Nakanishi, Y., Tominaga, K. and Kanazawa, M. (2011), "Fundamental characteristics of reduction system for seismic response using friction force", J. Civil Eng. Arch., 5(11), 1042-1047.
24 Lee, G.C., Ou, Y.C., Niu, T.C., Song, J.W. and Liang, Z. (2010), "Characterization of a roller seismic isolation bearing with supplemental energy dissipation for highway bridges", J. Struct. Eng., 136(5), 502-510.   DOI
25 Lewis, A.D. and Murray, R.M. (1995), "Variational principles for constrained systems: Theory and experiment", Int. J. Nonlin. Mech., 30(6), 793-815.   DOI
26 Nanda, R.P., Agarwal, P. and Shrikhande, M. (2012), "Base isolation system suitable for masonry buildings", Asian J. Civil Eng. (Build. Hous.), 13(2), 195-202.
27 Ou, Y.C., Song, J.W. and Lee, G.C. (2010), "A parametric study of seismic behavior of roller seismic isolation bearings for highway bridges", Earthq. Eng. Struct. Dyn., 39(5), 541-559.   DOI
28 Siringoringo, D.M. and Fujino, Y. (2015), "Seismic response analyses of an asymmetric base-isolated building during the 2011 Great East Japan (Tohoku) Earthquake", Struct. Control Hlth. Monit., 22(1), 71-90.   DOI
29 Tsai, C.S., Lin, Y.C., Chen, W.S. and Su, H.C. (2010), "Tri-directional shaking table tests of vibration sensitive equipment with static dynamics interchangeable-ball pendulum system", Earthq. Eng. Eng. Vib., 9(1), 103-112.   DOI
30 Wei, B., Yang, T.H. and Jiang, L.Z. (2015), "Influence of friction variability on isolation performance of a rolling-damper isolation system", J. Vibroeng., 17(2), 792-801.
31 Wei, B., Yang, T.H., Jiang, L.Z. and He X.H. (2017), "Effects of friction-based fixed bearings on the seismic vulnerability of a high-speed railway continuous bridge", Adv. Struct. Eng., DOI: 10.1177/1369433217726894.   DOI
32 Wei, B., Zuo C.J., He, X.H. and Jiang, L.Z. (2018), "Numerical investigation on scaling a pure friction isolation system for civil structures in shaking table model tests", Int. J. Nonlin. Mech., 98, 1-12.   DOI
33 Yim, C.S., Chopra, A.K. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 8(6), 565-587.   DOI
34 Wei, B., Wang, P., He, X.H. and Jiang, L.Z. (2018), "The impact of the convex friction distribution on the seismic response of a spring-friction isolation system", KSCE J. Civil Eng., 22(4), DOI: 10.1007/s12205-017-0938-6.   DOI
35 Wang, S.J., Hwang, J.S., Chang, K.C., Shiau, C.Y., Lin, W.C., Tsai, M.S., Hong, J.X. and Yang, Y.H. (2014), "Sloped multi-roller isolation devices for seismic protection of equipment and facilities", Earthq. Eng. Struct. Dyn., 43(10), 1443-1461.   DOI
36 Wang, Y.J., Wei, Q.C., Shi, J. and Long, X.Y. (2010), "Resonance characteristics of two-span continuous beam under moving high speed trains", Latin Am. J. Solid. Struct., 7(2), 185-199.   DOI
37 Yin, C.F. and Wei, B. (2013), "Numerical simulation of a bridge-subgrade transition zone due to moving vehicle in Shuohuang heavy haul railway", J. Vibroeng., 15(2), 1062-1068.
38 Wei, B., Cui, R.B. and Dai, G.L. (2013), "Seismic performance of a rolling-damper isolation system", J. Vibroeng., 15(3), 1504-1512.
39 Wei, B., Dai, G.L., Wen, Y. and Xia, Y. (2014), "Seismic performance of an isolation system of rolling friction with spring", J. Central South Univ., 21(4), 1518-1525.   DOI
40 Wei, B., Wang, P., He, X.H. and Jiang, L.Z. (2016), "Seismic isolation characteristics of a friction system", J. Test. Eval., DOI: 10.1520/JTE20160598.   DOI
41 Wei, B., Wang, P., Liu, W.A., Yang, M.G. and Jiang, L.Z. (2016), "The impact of the concave distribution of rolling friction coefficient on the seismic isolation performance of a spring-rolling system", Int. J. Nonlin. Mech., 83, 65-77.   DOI
42 Wei, B., Wang, P., Yang, M.G. and Jiang, L.Z. (2017), "Seismic response of rolling isolation systems with concave friction distribution", J. Earthq. Eng., 21(3), 325-342.   DOI
43 Wei, B., Xia, Y. and Liu, W.A. (2014), "Lateral vibration analysis of continuous bridges utilizing equal displacement rule", Latin Am. J. Solid. Struct., 11(1), 75-91.   DOI