• Title/Summary/Keyword: Degree of Superheat

Search Result 44, Processing Time 0.022 seconds

An Experimental Study on Condensation Characteristics at Various Condensation Pressure of R407C (응축압력 변화에 따른 R407C의 응축특성에 관한 연구)

  • 전창덕;장경근;김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • R407C is considered as alternative refrigerant of R22 for air conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerant, R407C. Experiments are carried out at condensation pressure of 2110 kPa and 1943 kPa with the degree of superheat of 1$0^{\circ}C$ and mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air condition is dry bulb temperature of 35$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that pressure drop gets smaller at a higher condensation pressure especially when condensation pressure is raised from 1943 to 2110 kPa. Heat transfer rate gets smaller at a lower condensation pressure in the range of experimental condition.

Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli (수직 동심 환형관 내부유동에서 과냉 유체의 비등 시작 열유속에 관한 표면 볼록 곡률의 영향)

  • Byun, Jung-Hwan;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1513-1520
    • /
    • 2002
  • Effect of Convex Surface Curvature on the Onset of Nucleate Boiling of Subcooled Fluid Flow in Vertical Concentric Annuli An experimental study has been carried out to investigate the effect of the transverse convex surface curvature of core tubes on heat transfer in concentric annular tubes. Water is used as the working fluid. Three annuli having a different radius of the inner cores, Ri=3.18mm, 6.35mm, and 12.70mm with a fixed ratio of Ri/Ro=0.5 are used over a range of the Reynolds number between about 40,000 and 80,000. The inner cores are made of smooth stainless steel tubes and heated electrically to provide constant heat fluxes throughout the whole length of each test section. Experimental result shows that heat flux values on the onset of nucleate boiling of the smaller inner diameter model is much higher than that of the larger size test model.

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Performance Evaluation of a Two-Stage Compression Heat Pump System for District Heating (지역난방용 2단 압축 히트펌프 시스템 성능평가)

  • Park, Cha-Sik;Cha, Dong-An;Kwon, Oh-Kyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • The objective of this study is to investigate the performance of a two-stage compression heat pump system for district heating. The experimental setup of heat pump consists of compressor, condenser, evaporator, expansion device, intercooler, flash tank, oil separator and accumulator. The experimental evaluations on the two-stage compression cycle were carried out under various operating conditions which were heat source temperature, the degree of compressor inlet superheat, and intermediate pressure. The temperature ranges of unutilized energy as the heat source were used in the test conditions. As the heat source temperature increased from $10^{\circ}C$ to $30^{\circ}C$, the COP and heating capacity of the heat pump system increased by 22.6% and 45.8%, respectively. The performance of the two-stage heat pump system increased by 5.2% with the variation of the intermediate pressure in the same heat source temperature conditions.

A Study on the Operating Control of a Heat Pump System with Screw Compressors (스크류 열펌프 시스템의 운전제어 방안에 관한 연구)

  • Park, Jun-Tark;Lee, Young-Soo;Kim, Jiyoung;Chae, Kyu-Jung;Yang, Hee-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.

Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU (고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화)

  • Kim, Seon-Chang;Jeon, Dong-Soon;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

Solidification Process of an Al-Cu Alloy in a Vertical Annular Mold and Effects of Cooling Rate on Macrosegregation (수직환상주형내 Al-Cu합금의 응고과정 및 냉각속도의 조대편석에 대한 영향)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1818-1832
    • /
    • 1994
  • Transport process during solidification of an AI-CU alloy in a vertical annular mold of which inner wall is cooled is numerically simulated. A model which can take account of local density dependence on the solute concentration is established and incorperated in the analysis. Results show that thermally and solutally induced convections are developed in sequence, so that there is little interaction between them. Thermal convection effectively removes the initial superheat from the melt and vanishes as solidification proceeds from the cooling wall. On the other hand, solutal convection which is developed later over the meshy and the pure liquid regions leads to large-scale redistribution of the consituents. The degree of the initial superheating hardly affects overall solidification behavior except the early stage of the process, when the cooling rate is kept constant. Macrosegregation is reduced remarkably with increasing cooling rate, because not only the liquidus interface advances so quickly that time available for the solute transport is not enough, but also the interdendritic flow is strongly damped by rapid crystal growth within the mushy region.

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

An Experimental Study on the Performance of Heat Pump Assisted Batch Dryer Using HFC134a (HFC134a를 사용한 열펌프 건조기의 성능에 관한 실험적 연구)

  • Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.3-11
    • /
    • 1997
  • In conventional heat and vent dryer, both sensible and latent heat could not be recovered from the exhaust air, but this problem could be solved by introducing a heat pump to a conventional dryer, having a connection with cooling, dehumidifying and heating of heat pump. In this work, HFC134a as a substitute refrigerant of CFC12 adopted in heat pump and a batch type is also introduced. The variables affected on the system performance are holding temperature of a drying chamber, bypass air ratio, degree of superheat and refrigerant flowrate, etc. The moisture contents were decreased curvilinearly in the range of $86{\sim}75%$ on the wet basis. Under the constant drying temperature, the face velocity plays an important role to the drying performance. The COPs are increased in accordance with the air velocity, on the other hand the SMERs are gradually decreased.

  • PDF

Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures (R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산)

  • Ju, J.M.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF