• 제목/요약/키워드: Degree of Membership

검색결과 147건 처리시간 0.022초

불완전 데이터의 패턴 분석을 위한 $_{MI}$SVMs (A New Support Vector Machines for Classifying Uncertain Data)

  • Kiyoung, Lee;Dae-Won, Kim;Doheon, Lee;Kwang H., Lee
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.703-705
    • /
    • 2004
  • Conventional support vector machines (SVMs) find optimal hyperplanes that have maximal margins by treating all data equivalently. In the real world, however, the data within a data set may differ in degree of uncertainty or importance due to noise, inaccuracies or missing values in the data. Hence, if all data are treated as equivalent, without considering such differences, the optimal hyperplanes identified are likely to be less optimal. In this paper, to more accurately identify the optimal hyperplane in a given uncertain data set, we propose a membership-induced distance from a hyperplane using membership values, and formulate three kinds of membership-induced SVMs.

  • PDF

A Fuzzy Traffic Controller Considering the spillback on the Multiple Crossroads

  • Kim, Young-Sik
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.722-728
    • /
    • 2003
  • In this paper, we propose a fuzzy traffic controller of Sugeno`s fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It use a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. First, in order to construct fuzzy traffic controller of Sugeno`s fuzzy model, we model the control process of the traffic light by using Mamdani`s fuzzy model, which has the uniform membership functions of the same size and shape. Second, we make Mamdani`s fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Last, we construct the fuzzy traffic controller of Sugeno`s fuzzy model by learning from the input/output data, which is retrieved from Mamdani`s fuzzy model with the non-uniform membership functions. We compared and analyzed the fixed traffic light controller, the fuzzy traffic controller of Mamdani`s fuzzy model and the fuzzy traffic controller of Sugeno`s fuzzy model by using the delay time and the proportion of the entered vehicles to the occurred vehicles. As a result of comparison, the fuzzy traffic controller of Sugeno`s fuzzy model showed the best performance.

Fuzzy Group Decision Making for Multiple Decision Maker-Multiple Objective Programming Problems

  • Yano, Hitoshi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.380-383
    • /
    • 2003
  • In this paper, we propose a fuzzy group decision making method for multiple decision maker-multiple objective programming problems to obtain the agreeable solution. In the proposed method, considering the vague nature of human subjective judgement it is assumed that each of multiple decision makers has a fuzzy goal for each of his/her own objective functions. After eliciting the membership functions from the decision makers for their fuzzy goals, total M-Pareto optimal solution concept is defined in membership spaces in order to deal with multiple decision maker-multiple objective programming problems. For generating a candidate of the agreeable solution which is total M-Pareto optimal, the extended weighted minimax problem is formulated and solved for some weighting vector which is specified by the decision makers in their subjective manner, Given the total M-Pareto optimal solution, each of the derision makers must either be satisfied with the current values of the membership functions, or update his/her weighting vector, However, in general, it seems to be very difficult to find the agreeable solution with which all of the decision makers are satisfied perfectly because of the conflicts between their membership functions. In the proposed method, each of the decision makers is requested to estimate the degree of satisfaction for the candidate of the agreeable solution. Using the estimated values or satisfaction of each of the decision makers, the core concept is desnfied, which is a set of undominated candidates. The interactive algorithm is developed to obtain the agreeable solution which satisfies core conditions.

  • PDF

생리신호를 기반으로 한 자동 감성 평가 전문가 시스템의 개발 (Development of an Automatic Expert System for Human Sensibility Evaluation based on Physiological Signal)

  • 정순철;이봉수;민병찬
    • 대한인간공학회지
    • /
    • 제23권1호
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study was to develop an automatic expert system for the evaluation of human sensibility, where human sensibility can be inferred from objective physiological signals. The study aim was also to develop an algorithm in which human arousal and pleasant level can be judged by using measured physiological signals. Fuzzy theory was applied for mathematical handling of the ambiguity related to evaluation of human sensibility. and the degree of belonging to a certain sensibility dimension was quantified by membership function through which the sensibility evaluation was able to be done. Determining membership function was achieved using results from a physiological signal database of arousal/relaxation and pleasant/unpleasant that was generated from imagination. To induce one final result (arousal and pleasant level) based on measuring the results of more than 2 physiological signals and the membership function of each physiological signal. Dempster-Shafer's rule of combination in evidence was applied, through which the final arousal and pleasant level was inferred.

퍼지논리를 이용한 자기 주도적 학습 능력과 시험 능력 평가 방법 (A Study on Self-Directed Learning and The Test-Performing Abilities Assessment Methods by Using Fuzzy Logic)

  • 정회인;양황규;김광백
    • 컴퓨터교육학회논문지
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2004
  • 본 논문에서는 학습자 스스로가 학습 능력을 조절하고 학습 능력과 시험 능력을 객관적으로 판단할 수 있는 자기 주도적 학습 능력 및 시험 능력 평가 방법을 제안하였다. 제안된 자기 주도적 학습 능력 및 시험 능력 평가 방법은 삼각형 타입의 소속 함수와 퍼지 논리를 이용하여 학습 능력과 시험 능력의 소속도를 계산하고 각각에 대해 퍼지 등급도를 부여하였다. 학습 능력의 소속도와 시험 능력의 소속도에 대해서 퍼지 관계의 연산 및 합성에 의해 최종 소속도를 계산하고 퍼지 등급도를 결정하여 학습자가 학습 능력의 소속도와 시험 능력의 소속도 및 최종 퍼지 등급도를 분석하여 스스로 학습을 조정할 수 있도록 하였다. 그리고 제안된 연구 내용을 인터넷 정보 검색사 필기 과목에 적용하여 구현하였다.

  • PDF

퍼지소속도를 이용한 얼굴 영상 분할

  • 이창수;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.69-72
    • /
    • 2000
  • 본 논문에서는 디지털 이미지 안에서의 얼굴 영상 분할을 위해서 데이터로부터 얼굴 영상과 배경 영상의 소속도(membership degree)를 학습시켜 구한다. 그리고 입력 이미지의 각 픽셀 값에 해당하는 소속도를 이용하여 얼굴 영상의 분할을 수행한다. 실험에서는 8-bit 그레이 스케일 영상의 ORL Database를 이용하였다.

  • PDF

A Time-Varying Sliding Mode for Robotic Manipulators

  • Lee, Sung-Young;Jeon, Hae-Jin;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.61.2-61
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Dynamics of robotic manipulator $\textbullet$ Time-varying sliding surface $\textbullet$ Fuzzy rule, Membership function $\textbullet$ Application to a two degree robotic manipulator $\textbullet$ Conclusion

  • PDF

Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정 (Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering)

  • 최정내;오성권;김현기
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.69-76
    • /
    • 2008
  • 본 논문에서는 Mountain clustering 알고리즘을 이용한 Fuzzy Radial Basis Function Neural Network(FRBFNN)의 규칙 수를 자동생성 방법을 제시한다. FRBFNN은 기존 RBFNN에서 가우시안이나 타원형 형태의 특정 RBF를 사용하는 구조와 달리 클러스터의 중심값과의 거리에 기반을 둔 멤버쉽함수를 사용하여 전반부의 공간 분할 및 활성화 레벨을 결정한다. 또한 분할된 로컬영역에서의 입출력 특성을 나타내는 퍼지규칙의 후반부로서 고차 다항식을 고려하였다. 본 논문에서는 데이터의 밀집도에 기반을 두어 클러스터링을 수행하는 Mountain clustering 알고리즘을 사용하여 적합한 퍼지 규칙(클러스터)의 수와 클러스터의 중심값을 자동적으로 생성하는 방법을 제안한다. Mountain clustering으로부터 구해진 클러스터의 중심은 멤버쉽 값을 결정하는데 사용되며, Weighted Least Square Estimator (WLSE) 알고리즘을 사용하여 후반부 다항식의 계수를 추정한다. 제안된 알고리즘은 비선형 함수 모델링에 적용하여 성능의 우수성과 알고리즘의 타당성을 보인다.

  • PDF

가중치를 갖는 FMM신경망과 패턴분류를 위한 특징분석 기법 (A Weighted FMM Neural Network and Feature Analysis Technique for Pattern Classification)

  • 김호준;양현승
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.