• Title/Summary/Keyword: Degrading microorganisms

Search Result 146, Processing Time 0.032 seconds

Influence of a Variety of Second Carbon Substrates on the Bacterial Consortium Differentially Degrading Cis- and Trans-1,3-Dichloropropene (1,3-D) (상업용 훈증제인 Cis-와 Trans-1,3-Dichloropropene(1,3-D)을 차별적으로 분해하는 Bacterial Consortium에 영향을 주는 다양한 이차 탄소원들의 효과)

  • Chung, Keun-Yook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1243-1252
    • /
    • 2000
  • The differential enhanced degradation of cis- and trans-1,3-D was observed in the previous two studies performed by several researchers. This study was initiated to investigate the involvement of microorganisms in the differential enhanced degradation of the chemicals. As expected, microorganisms were responsible for the enhanced degradation. A mixed bacterial culture capable of degrading 1,3-D was isolated from an enhanced soil sample collected from a site treated with 1,3-D. Similar to the enhanced soil, the mixed culture degraded trans-1,3-D faster than cis-1,3-D. This mixed culture could not utilize cis- and trans-1,3-D as a sole source of carbon for growth. Rather, a variety of second substrates were evaluated to stimulate the differential enhanced degradation of the two isomers. As a result, the mixed culture degraded cis- and trans-1,3-D only in the presence of a suitable second substrate. Therefore, it appeared that the degradation of cis- and trans-1,3-D was a cometabolic process. Second substrates that had the capacity to stimulate the degradation included soil leachate, tryptone, tryptophan, and alanine. Other substrates tested. including soil extract. glucose, yeast extract and indole, failed to stimulate the degradation of the two isomers. The mixed culture was composed of four morphologically distinctive colonies on L-agar plates.

  • PDF

Study on Microorganism Multiplication Behavior and Efficiency of Chlorine Disinfection in the Sewage Effluent from J Municipal Waste Water Treatment Plant (J 하수 처리장 방류수 중 세균의 성장 거동 및 염소 소독 효율 고찰)

  • Lee, Ungi;Lee, Yoonjin;Jeong, Kyuyean
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.122-128
    • /
    • 2008
  • We evaluated the relationship between the multiplication of heterotrophic microorganisms and physicochemical factors in the final discharged sewage water from J municipal waste water treatment plants. Dissolved organic carbon (DOC) was the most crucial factor influencing multiplication of heterotrophic plate counts (HPC) among the water quality variables selected. Degrading bacteria, such as proteolytic bacteria, lipholytic bacteria, starch degrading bacteria, cellulolytic bacteria, and pectinolytic bacteria, were monitored to understand the condition of nutrients in finished sewage effluent. The percentages of lipid and protein combined occupied 81% in finished sewage water. The multiplication of HPC showed the highest value in August. The formation of trihalomethane (THM) was low in the finished discharge water during chlorine disinfection, which was $71{\mu}/L$ (which was less than $100{\mu}/L$- the standard of drinking water quality) with 10 mg/L of chlorine during 15 min.

Substrate Utilization Patterns During BTEX Biodegradation by an o-Xylene-Degrading Bacterium Ralstonia sp. PHS1

  • Lee, Sung-Kuk;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.909-915
    • /
    • 2002
  • The biodegradation of BTEX components (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene) individually and in mixtures was investigated using the o-xylene-degrading thermo-tolerant bacterium Ralsronia sp. strain PHS1 , which utilizes benzene, toluene, ethylbenzene, or o-xylene as its sole carbon source. The results showed that as a single substrate for growth, benzene was superior to both toluene and ethylbenzene. While growth inhibition was severe at higher o-xylene concentrations, no inhibition was observed (up to 100 mg $l^-1$) with ethylbenzene. In mixtures of BTEX compounds, the PHS1 culture was shown to degrade all six BTEX components and the degradation rates were in the order of benzene, toluene, o-xylene, ethylbenzene, and m- and p-xylene. m-Xylene and p-xylene were found to be co-metabolized by this microorganism in the presence of the growth-supporting BTEX compounds. In binary mixtures containing the growth substrates (benzene, toluene, ethylbenzene. and o-xylene), PHS1 degraded each BTEX compound faster when it was alone than when it was a component of a BTEX mixture, although the degree of inhibition varied according to the substrates in the mixtures. p-Xylene was shown to be the most potent inhibitor of BTEX biodegradation in binary mixtures. On the other hand, the degradation rates of the non-growth substrates (m-xylene and p-xylene) were significantly enhanced by the addition of growth substrates. The substrate utilization patterns between PHS1 and other microorganisms were also examined.

Degrading and Flocculating Property of A Bacterium Isolated from the Extract of Earthworm (지렁이로부터 분리한 Bacillus pumilus JS-01 균주의 유기물 분해능 및 응집능)

  • Jeong, Doo-Young;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.141-150
    • /
    • 2006
  • To develop the microbial agents for the environmentally-friendly treatment and recycling of food waste, useful microorganisms, which showed higher degradation activities to various organic compounds and possessed flocculating activities, were isolated from the earthworm. One of the isolated strains, named JS-01, was further selected due to its higher flocculating activity against 0.5% Kaolin clay. JS-01 was identified as Bacillus pumilus sp. by 16s rDNA analysis. The optimal temperature and pH for the growth of JS-01 to express the flocculating activity was found to be at $37^{\circ}C$ in pH 7.0 of EPS broth medium. JS-01 also expressed good degrading activity against cellulose, which is one of the representative organic materials in food waste. We propose that JS-01 will be a good candidate for the efficient treatment of food waste and leachate due to the property to degrade cellulose and flocculating activity.

  • PDF

Degradation of Amaranth by Microorganisms (미생물(微生物)에 의한 Amaranth의 분해(分解))

  • Sohn, Jong Rok;Choi, Woo Young;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.146-155
    • /
    • 1983
  • Fundamental study was carried out to elucidate the mechanisms of biological degradation of dyestuff in environments. A few bacterial strains which were capable of degrading amarnath were obtained from soil through an extensive screening program and identified by microbiolological properties. Conditions for bacterial growth and amaranth degradation were characterized and optimized, and the degradation products were identified. The results were as follows. 1. The most active strain A12-1 to be capable of degradation of amaranth was identified as Pseudomonas sp. 2. Optimal conditions for growth of the strain A12-1 were:$35^{\circ}C$ and pH 7.5, and growth was markedly increaesd by aeration. 3. Degradation of amaranth by the strain was accessed under similiar conditions for growth, however significantly inhibited when the culture was aerated. 4. Both bacterial growth and amaranth degradation were gradually decreased with increased concentration of amaranth in the culture. 5. Reaction of the crude enzyme from the strain A12-1 was optimal at $35^{\circ}C$ and pH 7.5 for degrading amaranth. 6. Sodium naphthionate and R-amino salt were found to be the products of amaranth degradation by the strain A12-1.

  • PDF

Effect of Dye-Degrading Microbes' Augmentation on Microbial Ecosystem of the Fluidizing Media and Color Treatment in a Pilot Plant (염료 분해균 증대를 통한 Pilot Plant에서의 담체 내 미생물 생태와 색도처리에 미치는 영향)

  • Kim, Jung-Tae;Lee, Geon;Park, Do-Hyeon;Kang, Kyeong-Hwan;Kim, Joong-Kyun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.681-695
    • /
    • 2014
  • In a pilot-scale dyeing wastewater treatment using two-type fluidizing media, each thickness of biofilm was 15 and 30 ${\mu}m$, respectively. The numbers of protozoa inhabited in small-size (PEMT A) and big-size (PEMT B) media were $7.5{\times}10^4$ and $1.25{\times}10^5$ cells/ml, respectively, and dominant species were Entosiphon sulcatus var sulcatus in PEMT A and Chlamydomonas reinhardtii in PEMT B, respectively. Flask experiments using the two media revealed that the percentages of color removal were 25.8% in PEMT A and 27.1% in PEMT B after 72-h cultivation, indicating the necessity of bioaugmentation. Experiments for bioaugmentation effect on color removal were carried out in the pilot-scale treatment for 75 d by three-step operation under the control of wastewater loading rate and microbial input rate. Dye degradation occurred mainly in the second reaction tank, and the attachment of augmented dye-degrading microorganisms to media took at least 35 d. Final value of chromaticity in effluent was 227, meeting the required standard. Therefore bioaugmentation onto media was good for color treatment. In summary, thickness of biofilm formed on the media depended upon the size of media, resulting in different ecosystem inside the media. Hence, this affected microbial community and color treatment further. Accordingly, the reduction of operation cost is expected by efficient color-treatment process using bioaugmented media.

Novel Polyhydroxybutyrate-Degrading Activity of the Microbulbifer Genus as Confirmed by Microbulbifer sp. SOL03 from the Marine Environment

  • Park, Sol Lee;Cho, Jang Yeon;Kim, Su Hyun;Lee, Hong-Ju;Kim, Sang Hyun;Suh, Min Ju;Ham, Sion;Bhatia, Shashi Kant;Gurav, Ranjit;Park, ee-Hyoung;Park, Kyungmoon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.27-36
    • /
    • 2022
  • Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37℃ with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.

Evaluation, Characterization and Molecular Analysis of Cellulolytic Bacteria from Soil in Peshawar, Pakistan

  • Ikram, Hira;Khan, Hamid Ali;Ali, Hina;Liu, Yanhui;Kiran, Jawairia;Ullah, Amin;Ahmad, Yaseen;Sardar, Sadia;Gul, Alia
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • Cellulases are a group of biocatalyst enzymes that are capable of degrading cellulosic biomass present in the natural environment and produced by a large number of microorganisms, including bacteria and fungi, etc. In the current study, we isolated, screened and characterized cellulase-producing bacteria from soil. Three cellulose-degrading species were isolated based on clear zone using Congo red stain on carboxymethyl cellulose (CMC) agar plates. These bacterial isolates, named as HB2, HS5 and HS9, were subsequently characterized by morphological and biochemical tests as well as 16S rRNA gene sequencing. Based on 16S rRNA analysis, the bacterial isolates were identified as Bacillus cerus, Bacillus subtilis and Bacillus stratosphericus. Moreover, for maximum cellulase production, different growth parameters were optimized. Maximum optical density for growth was also noted at pH 7.0 for 48 h for all three isolates. Optical density was high for all three isolates using meat extract as a nitrogen source for 48 h. The pH profile of all three strains was quite similar but the maximum enzyme activity was observed at pH 7.0. Maximum cellulase production by all three bacterial isolates was noted when using lactose as a carbon rather than nitrogen and peptone. Further studies are needed for identification of new isolates in this region having maximum cellulolytic activity. Our findings indicate that this enzyme has various potential industrial applications.

NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-ʟ-Galactose Catabolism in Streptomyces coelicolor A3(2)

  • Tsevelkhorloo, Maral;Kim, Sang Hoon;Kang, Dae-Kyung;Lee, Chang-Ro;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.756-763
    • /
    • 2021
  • Agarose is a linear polysaccharide composed of ᴅ-galactose and 3,6-anhydro-ʟ-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-ʟ-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-ʟ-galactonate, and SCO3480 is a 3,6-anhydro-ʟ-galactonate cycloisomerase that converts 3,6-anhydro-ʟ-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50℃, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.

Degradation of Fat, Oil, and Grease (FOGs) by Lipase-Producing Bacterium Pseudomonas sp. Strain D2D3

  • Shon, Ho-Kyong;Tian, Dan;Kwon, Dae-Young;Jin, Chang-Suk;Lee, Tae-Jong;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.583-591
    • /
    • 2002
  • Biodegradation of fat, oil, and grease (FOGs) plays an Important role in wastewater management and water pollution control. However, many industrial food-processing and food restaurants generate FOG-containing waste waters for which there Is no acceptable technology for their pretreatment. To solve these problems, this study evaluated the feasibility of effective FOG-degrading microorganisms on the biodegradation of olive oil and FOG-containing wastewater. Twenty-two strains capable of degrading FOGs were isolated from five FOG-contaminated sites for the evaluation of their FOG degradation capabilities. Among twenty-two strains tested, the lipase-producing Pseudomonas sp. strain D2D3 was selected for actual FOG wastewater treatment. Its biodegradability was performed at 3$0^{\circ}C$ and pH 8. The extent of FOG removal efficiency was varied for each FOG tested, being the highest for olive oil and animal fat (94.5% and 94.4%), and the lowest for safflower oil (62%). The addition of organic nitrogen sources such as yeast extract, soytone, and peptone enhanced the removal efficiency of FOGs, but the addition of the inorganic nitrogen nutrients such as $NH_4$Cl and $(NH_4)_2SO_4$ did not increase. The $KH_2PO_4$ sources in 0.25% to 0.5% concentrations showed more than 90% degradability. As a result, the main pathway for the oxidation of fatty acids results in the removal of two carbon atoms as acetyl-CoA with each reaction sequence: $\beta$-oxidation. Its lipase activity showed 38.5 U/g DCW using the optimal media after 9 h. Real wastewater and FOGs were used for determining the removal efficiency by using Pseudomonas sp. strain D2D3 bioadditive. The degradation by Pseudomonas sp. strain D2D3 was 41% higher than that of the naturally occurring bacteria. This result indicated that the use of isolated Pseudomonas sp. strain D2D3 in a bioaugmentating grease trap or other processes might possibly be sufficient to acclimate biological processes for degrading FOGs.