• Title/Summary/Keyword: Degradation test

Search Result 1,832, Processing Time 0.031 seconds

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

A Study on the Effects of Contaminant Types on the Wear Degradation Characteristics in Internal Gear Pumps (불순물 입자의 유형에 따른 내접기어 펌프에서의 마모열화 특성 연구)

  • Shin, Jung-Hun;Ji, Kyung-Ryeol;Kim, Hyoung-Eui
    • Tribology and Lubricants
    • /
    • v.27 no.3
    • /
    • pp.134-139
    • /
    • 2011
  • The mechanical equipments which are exposed to impure environment undergo significant reductions in their own lifetimes. Several environmental test procedures have been developed to analyze these phenomena. Moreover in the industry to require shorter development duration, accelerated life testers artificially add test containments into machines. In this research JIS Z 8901 test powder was added into internal gear pumps which are used as oil pumps in vehicles and thus the effects of the addition on the degradation of the pumps were examined. Three kinds of contaminants were selected. Two of the contaminants are identical in particle size but different in the composition of the ingredients. The other pair have identical ingredients and composition but different particle size. The quantity of contaminants was also an interesting factor in this study. The results show that each JIS contaminant caused notable degradation in the discharge flow characteristic of pumps while friction torque degradation did not have any tendency. Finally leakage rates were deduced and equivalent wear volume ratios were calculated.

Optimal Degradation Experimental Design in Non-Linear Random Coefficients Models (비선형 확률계수모형을 고려한 최적 열화시험 설계)

  • Kim, Seong-Joon;Bae, Suk-Joo
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2009
  • In this paper we propose a method for designing optimum degradation test based on nonlinear random-coefficients models. We use the approximated expression of the Fisher information matrix for nonlinear random-coefficients models. We apply the simplex algorithm to the inverse of the determinant of Fisher information matrix to satisfy the D-optimal criterion. By comparison of the results from PDP degradation data, we suggest a general guideline to obtain optimum experimental design for determining inspection intervals and number of samples in degradation testing.

  • PDF

Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine (자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성)

  • Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

Storage Life Estimation of Magnesium Flare Material for 81 mm Illuminating Projectile (81 mm 조명탄용 마그네슘계 조명제 저장수명 예측)

  • Back, Seungjun;Son, Youngkap;Lim, Sunghwan;Myung, Inho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • It is necessary to both analyze root-cause of non-conformance of effective illumination time to the specification, and estimate the storage lifetime for 81 mm illuminating projectile stockpiled over 10 years. In this paper, aging mechanism of magnesium flare material due to long-term storage was supposed, and two-stage tests, pre-test and main test based on accelerated degradation tests were performed. Field storage environment of moistureproof was set up, and illumination times in the accelerated degradation tests for temperatures 60 and $70^{\circ}C$ were measured. Then, storage reliability of the projectile was estimated through analyzing the measured data and applying distribution-based degradation models to the data. The $B_{10}$ life by which 10 % of a population of the projectiles will have failed at storage temperature of $25^{\circ}C$ was estimated about 7 years.

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

The Evaluation of Ductile-Brittle Transition of Fracture Toughness by Material Degradation (재료열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • Kim, Sang-Pil;Kim, Hyung-Ick;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.579-584
    • /
    • 2001
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life, and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sired specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

  • PDF

The Study of Accelerated Life Test for Micro Display Device (마이크로 디스플레이 디바이스의 가속수명시험에 관한 연구)

  • 차상목;윤성록;조여욱
    • Journal of Applied Reliability
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper is concerned about an Accelerated Life Test for Micro Display Device which is being used in a Projection TV, in order to find a failure mode occurred in field in a short time, to identify a major factor to affect a life, and to estimate a mean life. For this purpose, we selected a temperature as a accelerated factor to perform a test and measured degradation of display device using visual inspection and chromaticity table. In the result of Accelerated Life Test, it is confirmed that failure mode is equal to the degradation of display device by vendor and the Temperature is a major factor to affect a failure. Besides, according as the display device is turned to green as degraded, it is identified that the change of the chromaticity value is one method to measure the degree of the degradation . So, we applied the optimal condition, which consider a cost and life to lower the Temperature which is a major factor acquired by the result of ALT, to PTV design

  • PDF

Accelerated Degradation Test of Electrolyte Membrane in PEMFC Stack (고분자 전해질 연료전지 스택에서 전해질막의 열화 가속시험)

  • Jeong, Jaejin;Lee, Sehoon;Lee, Hyeri;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.6-10
    • /
    • 2016
  • Until a recent day, degradation of PEMFC (Proton Exchange Membrane Fuel Cells) has been mainly studied in unit cell. But operation and degradation of real PEMFC going along in stack instead of unit cell. Therefore in this work, ADT (Accelerated Degradation Test) of PEMFC was done in stack and the result from stack's test was compared with that of unit cell. The polymer electrolyte membrane was degraded by repeated electrochemical and mechanical degradation method among several ADT methods. Current densities of MEA at 0.6V decreased in stack and unit cell, 28.4% and 27.8% respectively after ADT for 312 hours. Hydrogen crossover current densities of membrane increased in stack and unit cell, 16.8% and 15.2% respectively after ADT for 312 hours. The result of ADT in stack was similar that of ADT in unit cell, which showed that ADT method of unit cell was available to the stack.

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.