• Title/Summary/Keyword: Degradation test

Search Result 1,836, Processing Time 0.035 seconds

ANALYSIS ON RECEIVING PERFORMANCE FOR KOMPSAT-5 X-BAND IMAGE DATA

  • Park, Durk-Jong;Kang, Chi-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.208-211
    • /
    • 2008
  • Band-limited filtering will be applied to remove interference resulted from two neighbored channels in the transmission of KOMPSAT-5 X-Band image data. In that case, receiver in ground station should prepare righteous matched filter to avoid huge BER degradation depending on the matched filter of COTS receiver. As an effort to simulate the bandlimited filtering, test filter was designed and manufactured on the basis of main specification for output filter of KOMPSAT-5 satellite. Consequently, 1.8dB of BER degradation was measured at the output of test band-pass filter, but the degradation was downsized up to 0.4dB thanks to the adaptive matched filter of COTS receiver.

  • PDF

Long-term Testing and Analysis of a ScSZ/LaSrCuFe Cell

  • Wackerl, Jurgen;Peck, Dong-Hyun;Markus, Torsten
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.788-795
    • /
    • 2008
  • An electrolyte supported SOFC cell was tested at $800^{\circ}C$ in air for 3600 h with an applied current density of $200\;mA/cm^2$ to examine possible cathode degradation issues. A scandium- stabilized zirconia (ScSZ) with additional manganese doping (ScSZ: Mn) was used as electrolyte. A strontium and copper-doped lanthanum ferrite (LaSrCuFe) and platinum were used as cathode and quasi-anode material, respectively. The DC resistance was logged over the complete testing period. Additionally, impedance spectroscopy was used from time to time to track changes of the cell in-situ. Post-test analysis of the cell using methods like scanning electron microscopy imaging and other electrochemical testing methods allow the identification of different degradation sources. The results indicate a promising combination of electrolyte and cathode material in terms of chemical compatibility and electrical performance.

The Study based on Accelerated Degradation Test of General Lighting 4W LED Lamp using External Converter (조명용 4W 컨버터 외장형 LED램프의 가속열화시험평가)

  • Park, Chang-Kyu;Oh, Geun-Tae
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.267-279
    • /
    • 2011
  • LEDs have been used extensively in the mobile device, automobile, and general lighting because they are semi-permanent, long life, less power consumption, reliable and environmentally friendly. In this paper, the accelerated degradation test(ADT) for a general lighting 4W LED Lamp using external converter is considered. The conditions of ADT are high temperature and high humidity. We show that its life time is log-normally distributed with same parameters under both a normal condition and an accelerated condition, and also derive an accelerated factor.

A Basic Study on the Application of Partial Discharge Test on Low-voltage Electrical and Electronic Devices (저압용 전기전자기기에 부분방전시험의 적용을 위한 기초연구)

  • Kil Gyung-Suk;Song Jae-Yong;Moon Seung-Bo;Cha Myung-Soo;Hwang Don-Ha;Kang Dong-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.586-590
    • /
    • 2006
  • This paper deals with the application of a partial discharge (PD) test on low-voltage electrical and electronic devices, which is recently being accepted as a non-destructive and a effective dielectric test method. A comparative analysis combined with the Withstand Voltage Test (WVT) specified in IEC standards was carried out on low-voltage insulation transformers. The results showed that the WVT causes insulation degradation of the specimen during the test by applying high voltage. However, the PD test can be performed in ranges from 30 % to 50 % of the test voltage specified in the WVT. Therefore, the PD test is successfully applicable for a non-destructive test method on low-voltage electrical and electronic devices as a replacement of the WVT.

A Study on the Improvement of the Electrical Stability Versus MgO Addictive for ZnO Ceramic Varistors (MgO 첨가에 따른 ZnO 세라믹 바리스터의 신뢰성 향상에 관한 연구)

  • 소순진;김영진;송민종;박복기;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.427-430
    • /
    • 2001
  • The degradation characteristics versus MgO Additive for the ZnO ceramic devices fabricated by the standard ceramic techniques is investigated in this study. It were made these devices be basic Matsuoka's composition. Especially, MgO were added to analyze the degradation characteristics and sintered in air at 1300$^{\circ}C$. The conditions of DC degradation test were 115${\pm}$2$^{\circ}C$ for 12h. Using XRD and SEM, the phase and microstructure of samples were analyzed respectively. The elemental analysis in the microstructures was used by EDS, E-J analysis was used to determine ${\alpha}$ . Frequency analysis was accomplished to understand the relationship between R$\sub$g/ and $R_{b}$ with the electric stress at the equivalent circuit.

  • PDF

A Novel Oxidation Model with Photolysis for Degradation of Trichlorobenzenes (TCBs)

  • Kim, Jae-Hyoun
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.1-13
    • /
    • 1997
  • First- and second-order kinetic oxidation rates of trichlorobenzenes (TCBs) were obtained and compared by a chemical activation system (CAS) which mimics mixed functional oxidase activity. The system consists of EDTA, ferrous sulfate, ascorbic acid, and $H_2O_2$ in potassium phosphdte buffer (monobasic at pH 7.4). The rate of transformation in CAS was enhanced in the presence and absence of catalase in the sequence 1, 2, 3-TCB < 1, 2, 4-TCB < 1, 3, 5-TCB. In general, the rates of degradation were greater in the test media with catalase. The effect of photolysis on the degradation of the TCBs with the CAS were examined. Sensitized photolysis with nitrite, Fenton's reagent, TiO$_2$ and triethylamine (TEA) studied in concert with the CAS demonstrated significant enhancement of the degradation rate of TCBs. Disappearance rates of TCBs in CAS with prior photolysis or prior photosensitization were at least 10-fold higher than the sum of the rate for each single experiment. This study proves that the combination of the CAS and photolysis can be used as a suitable technique for enhancing degradation of TCBs in aqueous systems.

  • PDF

Durability of MEA Using sPEEK Membrane Reinforced with Poly Imide in PEMFC (고분자전해질연료전지에서 폴리이미드 강화 sPEEK막 MEA의 내구성)

  • Lee, Hye-Ri;Na, Il-Chai;Oh, Sung-Jun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.296-301
    • /
    • 2017
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, sulfonated poly (ether ether ketone) (sPEEK) membrane reinforced with poly imide was made to enhance of membrane durability. In order to test durability of single (un-reinforced) membrane and reinforced membrane MEA (Membrane and Electrode Assembly), degradation accelerated stress test was used. Before and after degradation, I-V polarization curve, hydrogen crossover current, electrochemical surface area, membrane resistance and charge transfer resistance were measured. As a result of experiments, hydrogen crossover current of reinforced MEA was lower than that of single MEA, therefor durability of reinforced MEA was higher than that of single MEA. There was not especially short phenomena in reinforced MEA after degradation accelerated stress test.

A STUDY ON THE AGING DEGRADATION OF ETHYLENE-PROPYLENE-DIENE MONOMER (EPDM) UNDER LOCA CONDITION

  • Seo, Yong-Dae;Lee, Hyun-Seon;Kim, Yong-Soo;Song, Chi-Sung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.279-286
    • /
    • 2011
  • The aging degradation and lifetime assessment of a domestic class 1E Ethylene-Propylene-Diene-Monomer (EPDM), which is a popular insulating elastomer for electrical cables in the nuclear power plants, were studied for equipment qualification verification under the Loss of Coolant Accident (LOCA) conditions. The specimens were acceleratively aged, underwent a LOCA environment, as well as tested mechanically, thermo-gravimetrically, and spectroscopically according to the American Society of the Testing of Materials (ASTM) procedures. The tensile test results revealed that the elongation at break gradually decreased with an increasing aging temperature. The lifetime of EPDM aged isothermally at $140^{\circ}C$ was 1,316 hours and reduced to 1,120 hours after experiencing the severe accident test. The activation energies of the elongation reduction were $1.10{\pm}0.196$ eV and $0.93{\pm}0.191$ eV before and after the LOCA condition, respectively. The TGA test results also showed that the activation energy of the aging decomposition decreased from 1.35 eV to 1.02 eV after undergoing the LOCA environment. Although the mechanical property changes were discernibly observed during the aging process, along with the LOCA simulation, the FT-IR analysis showed that the spectroscopic peaks and their intensities did not alter significantly. Therefore, it can be concluded that the degradation of the domestic class 1E EPDM due to aging can be tolerable, even in severe accident conditions such as LOCA, and thus it qualifies as a suitable insulating material for electrical cables in the nuclear power plants.

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.