• Title/Summary/Keyword: Degradation of methylene blue

Search Result 143, Processing Time 0.022 seconds

TiO2 Nanoparticles from Baker's Yeast: A Potent Antimicrobial

  • Peiris, MMK;Guansekera, TDCP;Jayaweera, PM;Fernando, SSN
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1664-1670
    • /
    • 2018
  • Titanium dioxide ($TiO_2$) has wide applications in food, cosmetics, pharmaceuticals and manufacturing due to its many properties such as photocatalytic activity and stability. In this study, the biosynthesis of $TiO_2$ nanoparticles (NPs) was achieved by using Baker's yeast. $TiO_2$ NPs were characterized by X-ray Diffraction (XRD), UV-Visible spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray analysis (EDX) studies. The XRD pattern confirmed the formation of pure anatase $TiO_2$ NPs. According to EDX data Ti, O, P and N were the key elements present in the sample. SEM and TEM revealed that the nanoparticles produced were spherical in shape with an average size of $6.7{\pm}2.2nm$. The photocatalytic activity of $TiO_2$ NPs was studied by monitoring the degradation of methylene blue dye when treated with $TiO_2$ NPs. $TiO_2$ NPs were found to be highly photocatalytic comparable to commercially available 21 nm $TiO_2$ NPs. This study is the first report on antimicrobial study of yeast-mediated $TiO_2$ NPs synthesized using $TiCl_3$. Antimicrobial activity of $TiO_2$ NPs was greater against selected Gram-positive bacteria and Candida albicans when compared to Gram-negative bacteria both in the presence or absence of sunlight exposure. $TiO_2$ NPs expressed a significant effect on microbial growth. The results indicate the significant physical properties and the impact of yeast-mediated $TiO_2$ N Ps as a novel antimicrobial.

Fabrication and Physicochemical Properties of Carbon/Titania/Bentonite Monolith for Architecture

  • Oh, Won-Chun;Choi, Jong-Geun;Song, Da-Ye;Kim, Ha-Rry;Chen, Ming-Liang;Zhang, Feng-Jun;Park, Tong-So
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, we used activated carbon (AC) and titanium oxysulfate as a titanium precursor to prepare carbon/titania composites. We then mixed it with bentonite in different ratios to make a carbon/titania/bentonite monolith for use in architecture bricks by using Phenolic rosin (PR) as a bonding agent. The physicochemical properties of the prepared composites were analyzed by BET surface area, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), self-cleaning effect and bactericidal tests. The BET surface areas increased as the ratio of carbon/titania composites increased. The SEM microscopy showed that the $TiO_2$ and bentonite were coated on the surface of the AC. The XRD patterns showed a mixture structure of anatase and rutile of $TiO_2$ with a clear $SiO_2$ structure. The EDX spectra of the carbon/titania/bentonite monolith confirmed the presence of various elements, namely C, O, Ti and Si, as well as other, impure elements. Moreover, to determine the self-cleaning effect of the carbon/titania/bentonite monolith, we used methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution under the irradiation of visible light. Accordingly, all of the samples had excellent degradation of the MB solution. Furthermore, it was observed that the composites with sunlight irradiation had a greater effect on E. coli than any other experimental conditions.

Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light

  • Zhang, Kan;Meng, Ze-Da;Choi, Jong-Geun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.246-251
    • /
    • 2010
  • The composite photocatalysts of a Fe-modified carbon nanotube (CNT)-$TiO_2$ were synthesized by a two-step sol-gel method at high temperature. Its chemical composition and surface properties were investigated by BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the BET surface area was improved by modification of Fe, which was related to the adsorption capacity for each composite. Interesting thin layer aggregates of nanosized $TiO_2$ were observed from TEM images, probably stabilized by the presence of CNT, and the surface and structural characterization of the samples was carried out. The XRD results showed that the Fe/CNT-$TiO_2$ composites contained a mix of anatase and rutile forms of $TiO_2$ particles when the precursor is $TiOSO_4{\cdot}xH_2O$ (TOS). An excellent photocatalytic activity of Fe/CNT-$TiO_2$ was obtained for the degradation of methylene blue (MB) under visible light irradiation. It was considered that Fe cation could be doped into the matrix of $TiO_2$, which could hinder the recombination rate of the excited electrons/holes. The photocatalytic activity of the composites was also found to depend on the presence of CNT. The synergistic effects among the Fe, CNT and $TiO_2$ components were responsible for improving the visible light photocatalytic activity.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

A Novel Synthesis and Photonic Effect of Fe-CNT/TiO2 Composites by Controlling of Carbon Nanotube Amounts

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.117-124
    • /
    • 2010
  • Titanium dioxide ($TiO_2$) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/$TiO_2$ composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/$TiO_2$ composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/$TiO_2$ composites. In particular, the photocatalytic activity of the Fe-CNT/$TiO_2$ composites under visible light was better than that of the CNT/$TiO_2$ composites due to the introduction of Fe particles.

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • Mavengere, Shielah;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS) (TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과)

  • Park, Sujin;Lee, Jaewoong;Kim, Sam Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

Effects of zinc oxide and calcium-doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models

  • Gabriela Leite de Souza ;Camilla Christian Gomes Moura ;Anielle Christine Almeida Silva ;Juliane Zacour Marinho;Thaynara Rodrigues Silva ;Noelio Oliveira Dantas;Jessica Fernanda Sena Bonvicini ;Ana Paula Turrioni
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2020
  • Objectives: This study aimed to synthesize nanocrystals (NCs) of zinc oxide (ZnO) and calcium ion (Ca2+)-doped ZnO with different percentages of calcium oxide (CaO), to evaluate cytotoxicity and to assess the effects of the most promising NCs on cytotoxicity depending on lipopolysaccharide (LPS) stimulation. Materials and Methods: Nanomaterials were synthesized (ZnO and ZnO:xCa, x = 0.7; 1.0; 5.0; 9.0) and characterized using X-ray diffractometry, scanning electron microscopy, and methylene blue degradation. SAOS-2 and RAW 264.7 were treated with NCs, and evaluated for viability using the MTT assay. NCs with lower cytotoxicity were maintained in contact with LPS-stimulated (+LPS) and nonstimulated (-LPS) human dental pulp cells (hDPCs). Cell viability, nitric oxide (NO), and reactive oxygen species (ROS) production were evaluated. Cells kept in culture medium or LPS served as negative and positive controls, respectively. One-way analysis of variance and the Dunnett test (α = 0.05) were used for statistical testing. Results: ZnO:0.7Ca and ZnO:1.0Ca at 10 ㎍/mL were not cytotoxic to SAOS-2 and RAW 264.7. +LPS and -LPS hDPCs treated with ZnO, ZnO:0.7Ca, and ZnO:1.0Ca presented similar NO production to negative control (p > 0.05) and lower production compared to positive control (p < 0.05). All NCs showed reduced ROS production compared with the positive control group both in +LPS and -LPS cells (p < 0.05). Conclusions: NCs were successfully synthesized. ZnO, ZnO:0.7Ca and ZnO:1.0Ca presented the highest percentages of cell viability, decreased ROS and NO production in +LPS cells, and maintenance of NO production at basal levels.

Development of the Functional Films Coated with Nano-TiO2 Particles for Food Packaging and Removal of Off-flavor from Soybean Sprouts (나노 TiO2를 적용한 식품 포장 필름 개발 및 콩나물의 이취 제거)

  • Choi, Yeonwook;Jeon, Kyu Bae;Song, Kihyeon;Kim, Jai Neung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.733-737
    • /
    • 2015
  • For testing the ultraviolet (UV)-blocking property of functional films coated with Nano-$TiO_2$ particles, UV-Vis spectra of oriented polypropylene (OPP) films uncoated and coated with $TiO_2$ of 3% and 5% in Polyurethane (PU) and polyvinyl butyral (PVB)-Cellulose binders were measured. The result of UV-Vis analyses showed that the film coated with 5% $TiO_2$ in PVB binders had a significant effect on UV protection of 90% compared with the film uncoated. Also The result of The photodegradation of methylene blue (MB), OPP films coated with 5% in both PU and PVB binders had a high photocatalytic activity for MB degradation. To evaluate the effect of the developed functional film coated with Nano-$TiO_2$ particles, fresh soybean sprouts were used. Nano-$TiO_2$ coated film was observed to decompose the off-flavor produced by soybean sprouts within packages during distribution, but uncoated film did not. Therefore, Nano-$TiO_2$ coated film package could give the greatest effect in extending the shelf life of soybean sprouts.

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance (수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성)

  • Kim, Dong Jin;Lee, Jin Hee;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.241-245
    • /
    • 2013
  • Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.