• Title/Summary/Keyword: Degradation environment

Search Result 1,610, Processing Time 0.03 seconds

Study on the Generation of Chemically Active Species using Air-plasma Discharging System (공기-플라즈마 방전 시스템에서 화학적 활성종의 생성에 대한 연구)

  • Kim, DongSeog;Park, YoungSeek
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2012
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and air flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the increased of the 2nd voltage (4 kV to 15 kV), RNO degradation, $H_2O_2$ and $O_3$ generation were increased. The conductivity of the solution was not influencing the RNO degradation and $H_2O_2$ and $O_3$ generation. The effects pH was not high on RNO degradation. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

Effects of Water Vapor, Molecular Oxygen and Temperature on the Photocatalytic Degradation of Gas-Phase VOCs using $TiO_2$Photocatalyst: TCE and Acetone

  • Kim, Sang-Bum;Jo, Young-Min;Cha, Wang-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.35-42
    • /
    • 2001
  • Recent development of photocatalytic degradation method that is mediated by TiO$_2$ is of interest in the treatment of volatile organic compounds(VOCs). In this study, trichloroethylene(TCE) and acetone were closely examined in a batch scale of photo-reactor as a function of water vapor, oxygen, and temperature. Water vapor inhibited the photocatalytic degradation of acetone, while there was an optimum concentration in TCE. A lower efficiency was found in nitrogen atmosphere than air, and the effect of oxygen on photocatalytic degradation of acetone was greater than on that of TCE. The optimum reaction temperature on photocatalytic degradation was about 45$^{\circ}C$ for both compounds. NO organic byproducts were detected for both compounds under the present experimental conditions. It was ascertained that the photocatalytic reaction in a batch scale of photo-reactor was very effective in removing VOCs such as TCE and acetone in the gaseous phase.

  • PDF

Biominerlization and Possible Endosulfan Degradation Pathway Adapted by Aspergillus niger

  • Bhalerao, Tejomyee S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1610-1616
    • /
    • 2013
  • Endosulfan is a chlorinated pesticide; its persistence in the environment and toxic effects on biota are demanding its removal. This study aims at improving the tolerance of the previously isolated fungus Aspergillus niger (A. niger) ARIFCC 1053 to endosulfan. Released chloride, dehalogenase activity, and released proteins were estimated along with analysis of endosulfan degradation and pathway identification. The culture could tolerate 1,000 mg/ml of technical grade endosulfan. Complete disappearance of endosulfan was seen after 168 h of incubation. The degradation study could easily be correlated with increase in released chlorides, dehalogenase activity and protein released. Comparative infrared spectral analysis suggested that the molecule of endosulfan was degraded efficiently by A. niger ARIFCC 1053. Obtained mass ion values by GC-MS suggested a hypothetical pathway during endosulfan degradation by A. niger ARIFCC 1053. All these results provide a basis for the development of bioremediation strategies to remediate the pollutant under study in the environment.

부탄 이용 미생물에 의한 MTBE(Methyl tert-Butyl Ether) 분해 특성

  • 장순용;백승식;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.136-139
    • /
    • 2001
  • In this study, we have examined potential degradation of MTBE (methy1 tert-butyl ether) by pure culture ENV425 and mixed culture isolated from gasoline contaminated soil using n-butane as the sources of carbon and energy. The results described in this study suggest that MTBE is degraded cometabolically by ENV425 and mixed culture grown n-butane, and the disappearance of TBA after complete degradation of MTBE suggest the further degradation of TBA. Butane and MTBE degradation was completely inhibited by acetylene, which indicated that both substrates were degraded by butane-utilizing bacteria. MTBE was degraded ENV425 and mixed culture grown n-butane, and TBA (tert-butyl alcohol) was produced as product of MTBE oxidation. TBA production was accounted 54.7% and 58.6% for MTBE oxidation by ENV425 and mixed culture, respectively. The observed maximal transformation yield (T$_{y}$) were 44.7 and 34.0 (nmol MTRE degraded/$\mu$mol n-butane Utilized) by ENV425 and mixed culture, respectively.y.

  • PDF

A Study on the Degradation Characteristics of EPN (EPN의 분해특성에 관한 연구)

  • 이용두;김현희;김창영
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1103-1108
    • /
    • 2002
  • In order to evaluate the degradation organophosphorus pesticide, EPN, in water environment, the effects of water temp.(10$^{circ}C,\;30^{\circ}C$), pH(3-11) and sunlight on its degradation were investigated during 10 days. The degradation rate of EPN(200 rpm) was faster at higher water temp. and higher pH, i.e., its degradation rate at pH 3, 5, 7, 9, 11 was 57, 63, 66, 69, 75%(1$0^{\circ}C$), and 70, 74, 79, 91, 97%(3$0^{\circ}C$) after 10 days, respectively. The effect of water temp. on its degradation was little in acidic condition, but was rather great in alkaline condition, with time. EPN was degraded fast at the alkaline condition by photolysis. At the condition of pH 11, EPN was degraded fast at the early stage in the first 2 days, but after that the degradation rate was weakened.

Discussion on the Technology Route for Land Degradation Monitoring and Assessment based on 3S Technique

  • Jing, Wang;Ting, He;Zhang, Ji-Xian;Li, Hai-Tao
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.757-765
    • /
    • 2002
  • This paper analyzes three theories for land degradation assessment and internationl/domestic methods for land degradation monitoring and assessment. Under the guidance of absolute degradation thought, this paper proposes the technological framework for monitoring and appraising cultivated land degradation based on the 3S technique. We can apply 3S technique and analyze the nature, the environmental, the social, and the economic elements which influence the land utilization and degradation synthetically, to set up the indicator system of the cultivated land degradation monitoring and assessment based on 3S technique; to propose the degradation information extraction methods based on 3S technique; to create the quantitative assessment model and method for land degradation; to analyze the ecological environment response of land use and degradation quantitatively; and to propose the measure, policy and suggestion for solving the land degradation problem from the point of view of land utilization.

  • PDF

유기오염물의 분해에 의한 오염토양내 비소종 변화 영향

  • 천찬란;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.347-350
    • /
    • 2002
  • Arsenic speciation changes between As(V) and As(III) are subject to changes in accordance with redox conditions in the environment. It is common to find contaminated sites associated with mixed wastes including both organic pollutants and heavy metals. We conducted microcosm experiment under hypothesis that the co-disposed organic pollutants would influence on the arsenic forms and concentrations, via degradation of the organic pollutants and the consequent impact on the redox conditions in soil. Artificially contaminated soil samples were run for 40 days with control samples without artificial contamination. We noticed arsenic in the contaminated soil showed different behaviour compared with the arsenic in the control soil. The findings indicate degradation of organic pollutants in the contaminated soil influenced on the arsenic speciation and concentrations. A further work is needed to understand the process quantitatively. However, we could confirm that degradation of organic pollutants can influence on the abiotic processes associated with geochemical reactions in contaminated soil. Degradation of organic pollutants can increase the mobility and toxicity of arsenic in soil and sediment by changing redox conditions in the geological media and subsequently from As(V) to As(III).

  • PDF

Study of Light-induced Effect on Silicon Solar Cell from Wafer to Cell: A Review (광조사에 의한 실리콘 태양전지 열화 연구)

  • MyeongSeob Sim;Dongjin Choi;Myeongji Woo;Ji Woo Sohn;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.6-16
    • /
    • 2024
  • The efficiency of silicon solar cells is approaching a theoretical limit referred to as 'the state of the art'. Consequently, maintaining efficiency is more productive than pursuing improvements the last room for limiting efficiency. One of the primary considerations in silicon module conservation is the occurrence of failures and degradation. Degradation can be mitigated during the cell manufacturing stage, unlike physical and spontaneous failure. It is mostly because the chemical reaction is triggered by the carrier generation of thermal and light injection, an inherent aspect of the solar cell environment. Therefore, numerous researchers and cell manufacturers are engaged in implementing mitigation strategies based on the physical degradation mechanism.

Heavy Metal Effects on the Biodegradation of Fluorene by Sphingobacterium sp. KM-02 in liquid medium (Sphingobacterium sp. KM-02에 의한 Fluorene 분해에 미치는 배지 내 중금속 영향)

  • Nam, In-Hyun;Kim, Jae-Gon;Chon, Chul-Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.82-91
    • /
    • 2012
  • The heavy metal effects on the degradation of fluorene by Sphingobacterium sp. KM-02 was determined in liquid cultures. The results showed that 10 mg/L cadmium, copper, zinc, and lead not only affected the growth of KM-02 with fluorene but also the ability of growing or resting cells to degrade this compound. Growth and fluorene degradation were strongly inhibited by cadmium and copper at 10 mg/L, while the inhibitory effect of zinc and lead at the same concentration or at 100 mg/L were not significant. In contrast, arsenic did not affect degradation or growth, even at very high concentrations of 100 mg/L. Subsequent analyses additionally revealed that concentrations of arsenic remained unchanged following incubation, while those of cadmium and copper decreased significantly.

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.