• Title/Summary/Keyword: Degasing Process

Search Result 3, Processing Time 0.02 seconds

An Implementation of an Integrated Degasing System for Aluminum Molten Metal in Continuous Casting (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle, pollution due to producing a lot of toxic gases like chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals, loss of metals, and decreasing the life of refractory materials. In order to solve these problems, this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the existing methods and prevented environmental pollution with smokeless, odorless, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The method developed in this study decreases the molten metal processing and settling time compared to the existing methods and improves the workers' health, safety, and environment because there is no pollution in processes.

Development of a monolithic apparatus for degasing aluminum continuous casting molten metal (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • 이용중;김태원;김기대;류재엽;이형우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.145-149
    • /
    • 2004
  • It is necessary for managing a perfect process for degasing aluminum molten metal according to the increase of a grade of aluminum and its alloy products. There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle. pollution due to the producing a lot of toxic gases like chlorine and fluoride gas. irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals. loss of metals, and decreasing the life of refractory materials. In order to solve these problems. this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the exist ing methods and prevented environmental pollution wi th smokeless. odor less, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The developed method can significantly reduce product faults that are caused by the production of gas and oxidation because it uses a preprocessed molten metal with chemicals. In addition. the amount of the produced sludge can also be reduced by 60-80% maximum compared with the existing methods. Then. it makes it possible to minimize the loss of metals. Moreover. the molten metal processing and settling time is also shortened by comparing it with the existing methods that are applied by using chemicals. In addition, it does much to improve the workers' health, safety and environment because there is no pollution. The improvement of productivity and prevent ion effects of disaster from the results of the development can be summarized as follows. It will contribute to the process rationalization because it does not have any unnecessary processes that the molten metal will be moved to an agitator by using a ladle and returned to process for degasing like the existing process due to the monolithic configuration. There are no floating impurities due to the oxidation caused by the contact with the air as same as the existing process. In addition. it can protect the blending of precipitation impurities. Because it has a monolithic configuration. it can avoid the use of additional energy to compensate the temperature decreasing about 60t that is caused by the moving of molten metal. It is not necessary to invest an extra facilities in order to discharge the gas generated from a degasing process by using an agitator. The working environment can be improved by the hospitable air in the factory because the molten metal is almost not exposed in the interior of the area.

  • PDF

Degasser for Products Produced Using Research to Improve the Quality (제품생산 시 탈가스 장치를 이용한 품질향상에 관한 연구)

  • Kang, Seog Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4713-4716
    • /
    • 2014
  • Several methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals, and the input method that supplies argon and nitrogen, or chlorine gas using a gas blow-tube. On the other hand, these methods have some problems, and it is a difficult process to handle pollution due to the production of considerable toxic gases, such as chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are most fatal are the production of considerable sludge due to a reaction of aluminum molten metal with chemicals, loss of metals, and the decreasing life of refractory materials. To solve these problems, this study developed a technology that is related to continuous casting of molten aluminum metal and monolithic degasing apparatus.