• Title/Summary/Keyword: Deformed shape

Search Result 439, Processing Time 0.027 seconds

Real-time Shape Manipulation using Deformable Curve-Skeleton

  • Sohn, Eisung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.491-501
    • /
    • 2019
  • Variational methods, which cast deformation as an energy-minimization problem, are known to provide a good trade-off between practicality and speed. However, the time required to deform a fully detailed shape means that these methods are largely unsuitable for real-time applications. We simplify a 2D shape into a curve skeleton, which can be deformed much more rapidly than the original shape. The curve skeleton also provides a simplified control for the user, utilizing a small number of control handles. Our system deforms the curve skeleton using an energy-minimization method and then applies the resulting deformation to the original shape using linear blend skinning. This approach effectively reduces the size of the variational optimization problem while producing deformations of a similar quality to those obtained from full-scale nonlinear variational methods.

Counter-deforming Method for a Bracket Design of a Ship Via Geometric Shape Deformation (기하적인 형상 변형을 이용한 선박 브라켓 부재의 역변형 설계)

  • Cheon, Sanguk;Kim, Hyeong-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.321-328
    • /
    • 2013
  • A method of designing a manufacturing shape of ship plate parts considering welding deformation is introduced. In this paper, the design shape of a bracket is deformed not by a thermoelastic method but by a pure geometric method. Deformation quantities are estimated based on data captured in the field and then a manufacturing design shape is obtained by deforming an original design shape by a geometric deformation method. The proposed method has been implemented and tested in the shipyard.

Recognition of Handwritten-Hangeul by shape Pattern (Shape Pattern에 의한 필기체의 한글 인식)

  • 박종욱;이주근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.1-9
    • /
    • 1985
  • In this paper, a new methods which decomposes the handwritten-Hangout shape panerns into subpatterns and recognizes the decomposed subpatterns are proposed. the feature vcfices arc detected by searching boundary of the shape pattern and a topolo-gical structure is represented by a bridge links and contact links between the feature vertices. From the tpcological structure, Hangout shape patterns are decomposed into the subpatterns of 44-Korean alphabet. The 학obol and the local attributes are extracted from the subpattrrns and the subpatterns are recognized by matching those attributes with the dictionary. It is assured that this method is more effect and reasonable for deformed handwrioen Hangout shape patterns. Experimental results show that recognition rate is 99(%) and recogni-tion time is also reduced as those using the thinning process.

  • PDF

Structural Analysis of Boarding Bridge (탑승교의 구조해석)

  • U, Chang-Su;Kim, Jeong-U
    • 연구논문집
    • /
    • s.25
    • /
    • pp.207-213
    • /
    • 1995
  • Board bridges are one of the most important structural components of the airport ground equipment. Passenger boarding bridges will be installed to provide enclosed passengers for persons moving between aircraft loading doors and second story terminal gates. In order to the understand of boarding bridge, type and structural components are investigated and analyzed by using the commercial finite element code for model of various loading conditions. As results, the deformed shape and stress distribution of WS-750T and Jetway system type are obtained. It is expected to establish basic technology to design and change the shape of boarding bridge to improve the function.

  • PDF

An Upper bound Analysis of Metal Forming Processes by Nodal Velocity Fields using Shape Function (형상함수를 이용한 절점 속도장애 의한 소성가공 공정의 상계해석)

  • 김영호;배원병;박재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.210-216
    • /
    • 1994
  • The velocity fields can be composed by nodal points using shape function. Forging load and deformed profile are obtained by minimizing total energy consumption rate which is function of unknown velocities at each nodal points. The velocity and stremiline distribution can also be investigated at the deformation profile. The effectiveness of proposed method in this paper is demonstrated by comparing with those of FEM and experiment, that is the results of upset forging problem. Obtained results are compared with FEM and experiment and fairly good agreement is found between them.

  • PDF

Estimation of Structural Deformed Shapes Using Limited Number of Displacement Measurements (한정된 계측 변위를 이용한 구조물 변형 형상 추정)

  • Choi, Junho;Kim, Seungjun;Han, Seungryong;Kang, Youngjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1295-1302
    • /
    • 2013
  • The structural deformed shape is important information to structural analysis. If the sufficient measuring points are secured at the structural monitoring system, reasonable and accurate structural deformation shapes can be obtained and structural analysis is possible using this deformation. However, the accurate estimation of the global structural shapes might be difficult if sufficient measuring points are not secure under cost limitations. In this study, SFSM-LS algorithm, the economic and effective estimation method for the structural deformation shapes with limited displacement measuring points is developed and suggested. In the suggested method, the global structural deformation shape is determined by the superposition of the pre-investigated structural deformed shapes obtained by preliminary FE analyses, with their optimum weight factors which lead minimization of the estimate errors. 2-span continuous bridge model is used to verify developed algorithm and parametric studies are performed. By the parametric studies, the characteristics of the estimation results obtained by the suggested method were investigated considering essential parameters such as pre-investigated structural shapes, locations and numbers of displacement measuring points. By quantitative comparison of estimation results with the conventional methods such as polynomial, Lagrange and spline interpolation, the applicability and accuracy of the suggested method was validated.

An Experimental Study for Bond Characteristics of Deformed Bar Embedded in Donut Type Biaxial Hollow Slab (도넛형 이방향 중공슬래브의 부착특성에 관한 실험적 연구)

  • Chung, Joo-Hong;Kang, Sung-Hoon;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study investigated the bond characteristics of embedded deformed steel bar in donut type biaxial hollow slabs. The donut type hollow sphere make concrete inner cover formed between steel bar and hollow sphere due to the hollow shape and arrangement. Generally, inner cover was thinner than outer cover, and some part of donut type biaxial hollow slab has smaller inner cover thickness than $2.5d_b$. It was affected to the bond condition of deformed bar. Furthermore, inner cover thickness changes along the longitudinal deformed bar due to hollow shape. Therefore, donut type hollow slab was divided 3 regions according to the hollow shape such as insufficient region, transition region, sufficient region. Pull-out test were performed to find out the effect of bond condition by the region. Main parameters are inner cover thickness, embedded length and bond location. Bond characteristics of donut type biaxial hollow slab were confirmed through comparison of bond stress-slip relationship, maximum bond strength and bond stress distribution of each regions. And the calculation method of bond strength of donut type biaxial hollow slab was suggested based on the test results.

A Study on The Prediction of Workpiece Shape of The Electrochemical Machining by Boundary Element Method (경계요소법에 의한 전해가공물의 형상예측에 관한 연구)

  • 강대철;양재봉;김헌영;전병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.443-447
    • /
    • 2003
  • The BEM (Boundary Element Method) is a computational technique for the approximate solution of problems in continuum mechanics. In the BEM both volume and surface integrals transformed into boundary integral equations. So, we applied the ECM (Electrochemical Machining) process to boundary problem, because our focus is only deformed shape. The ECM process is modeled as a two-dimensional problem assuming constant properties of electrolyte, and an incremental formulation is used with automatic mesh regeneration. As a result the final shape is roughly agreed with experimental shape. But, it has an error of exact shape, because a chemically factor is not considered

  • PDF

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF